FELIX User Manual

ATLAS FELIX Group

<<<L

Table of Contents

1. Welcome to the FELIX User Manual

1.1. Overview

1.2. Document Compatibility

2. Introduction to FELIX

2.1. FELIX Variants and Functionality

2.1.1. Gigabit Transceiver (GBT) and the Versatile Link

2.1.2. FULL Mode
2.1.3. Propagation of ATLAS TTC Information

3. Hardware Requirements and Setup

3.1. Recommended Hardware Platforms

3.1.1. FPGA I/O Hardware: VC-709 (Commodity Platform)

3.1.2. FPGA I/O Hardware: Custom Platforms
BNL-712
3.1.3. FELIX Host Systems
3.1.4. Network Configuration
3.2. Installation of VC-709
3.3. Installation of BNL-711 and BNL-712
3.4. Connecting to an existing TTC system

3.4.1. VC-709 Only: TTCfx v3 Overview and Installation

3.4.2. Connecting TTC and BUSY
3.5. Configuring FELIX Clock
3.5.1. Clock Source Selection
3.5.2. TTC Clock Recovery: ADN2814
3.5.3. Clock Jitter Cleaning
3.6. Connecting and Initialising Optical Links
3.6.1. Physical Link Layer Status: VC-709
3.6.2. Physical Link Layer Status: BNL-711/712
3.6.3. Logical Link Layer Initialisation

4. Firmware Releases and Programming

4.1. Firmware Distribution Protocol
4.1.1. Release Announcements and Distribution
4.1.2. Supported Link Protocols & Encoding
4.2. Firmware Programming
4.2.1. JTAG Connectivity
4.2.2. Setting up the Vivado™ Suite
4.2.3. Programming the FPGA Directly
4.2.4. Programming the FLASH ROM (VC-709)
4.2.5. Programming the FLASH ROM (BNL-711/712)

© 00 00 00 00 3 I 3

W N NN NN NDNID NN R R B R R R R, |) |l | |l | | |))))
N © 3 b B b W W W WwRrk © O © W 0 J 9 3o o u uu DN o o o o o

4.2.6. Enabling new FPGA Configuration
PCle hotplug procedure
5. Software Distribution and Installation
5.1. Software Distribution Protocol
5.1.1. Pre-requisites
5.1.2. Release Announcements and Distribution
FELIX Driver
FELIX Software Suite
5.2. Software Installation Instructions
5.2.1. Driver RPM Installation Instructions
DKMS
Removal of Existing Driver Installations
Installation of New Driver
5.2.2. Installation of FELIX Software Suite
5.2.3. Installation of FELIX rpm
5.2.4. Installation of FELIX in CVMFS
6. Basic Tools
6.1. E-link Configuration with elinkconfig
6.1.1. Global Panel
Data Path Fan Out Selectors: TH_FanOut and FH_FanOut
Data Timeout Control Dialog
Clock Source Selection Dialog
6.1.2. ToHost Panel
6.1.3. FromHost Panel
6.1.4. Link and Data Generator Configuration Upload Dialog
6.1.5. Guide to Valid E-link Configurations
Semi-Static Firmware E-link Configuration
6.1.6. Guide to common configuration tasks
Working with E-link configurations stored in files
Modifying the existing E-link configuration on a FELIX card without a file
Configure the to-host Level-1 Accept info E-link (TTC E-link)
Configure the to-front end TTC E-links
Configure GBT-SCA E-links to/from host
IC channel
6.2. Low Level Tools
6.2.1. fIx-info
6.2.2. fcap
6.2.3. fIx-config
6.2.4. flx-init
6.2.5. fIx-reset

6.2.6. felix-cmem-free

33
33
34
34
34
34
34
34
34
34
34
35
35
38
38
38
39
41
43
44
45
46
46
48
49
50
51
52
52
52
52
53
54
54
35
35
57
58
39
60
60

6.3. Dataflow from/to Front-end via FELIX to/from FELIX host PC
6.3.1. fdaq(m)
Running a DAQ Test with External Data Source
Running a DAQ Test with Internal Data Generation
6.3.2. fupload
6.4. FELIX Configuration Tools
6.4.1. felink
Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width
6.4.2. fereverse
6.4.3. fgpolarity
6.4.4. feconf
6.4.5. femu
6.4.6. fttcemu
6.4.7. fttcbusy
6.4.8. feto
6.4.9. fflash
6.4.10. fflashprog
6.5. General Debugging Tools
6.5.1. fcheck
6.5.2. fedump
6.6. Remote Hardware Command and Configuration Tools
6.6.1. fice
6.6.2. fghtxconf
6.7. Tools for GBT-SCA device access
6.7.1. fec
6.7.2. fscaid
6.7.3. fscaio
6.7.4. fscaadc
6.7.5. fscadac
6.7.6. fscai2c
6.7.7. fscads24
6.7.8. fscajtag
6.7.9. fxvcserver
7. Felixcore Application and NetIO
7.1. Operational Principles
7.2. Configuration
7.3. Monitoring
7.3.1. FelixCore Native Monitoring
7.4. FelixCore Examples
7.4.1. Tests without an FLX Card
7.4.2. Tests with an FLX Card

61
61
63
63
64
65
65
66
67
68
69
70
70
72
73
74
75
77
77
79
79
79
82
83
83
85
85
86
88
89
90
91
92
94
94
94
96
96
97
97
97

7.5. Connecting to a felixcore instance using NetIO tools 98

7.6. Connecting to a felixcore instance using FATCAT 98
7.7. Discovering E-links with the FELIX BUS system 98
7.8. Debugging 99
7.8.1. Using the FelixCore event tracing framework 99

8. Felix-star Application and NetIO-next 101
8.1. Introduction 101
8.2. Architecture 101
8.3. Felix Star commands 102
8.3.1. felix-star 102
8.3.2. felix-tohost 102
8.3.3. felix-toflx 104
8.3.4. felix-busy-tohost 105
8.3.5. felix-busy-toflx 106
8.3.6. felix-fifo2elink 106
8.3.7. felix-dir2bus 106
8.3.8. felix-elink2file 107
8.3.9. felix-file2host 107
8.3.10. felix-display-stats 108
8.3.11. felix-get-config-value 109
8.3.12. felix-get-ip 110
8.3.13. felix-get-mode 110
8.3.14. felix-fid 111
8.4. Startup and Configuration 112
8.5. Monitoring 113
8.6. Discovering E-links with the FELIX BUS system 113
8.7. Subscribing to streams 114
8.8. Quick start and testing procedures 114
8.8.1. Check connectivity and data transmission (no felix-bus) 114
8.8.2. Check connectivity and data transmission (incl. felix-bus) 114
8.9. The felix-client-interface 115
9. FAQ, Troubleshooting and User Resources 117
9.1. Frequently Asked Questions 117
9.2. Troubleshooting 117
9.2.1. Known Issues with GBTx 117
9.2.2. IOMMU 118
9.2.3. File Descriptor (FD) Limit 118
9.2.4. Debugging Link Status 118
9.2.5. SMBus Access 119
9.2.6. Problems with CMEM allocation on boot 122

9.3. Guide for System Designers 123

9.4. FELIX Firmware Modules for Front-end Users 125

9.4.1. Downloading Firmware Source 125
9.4.2. GBT Test Modules 125
GBT-FPGA 125

GBTx 125

9.4.3. FULL Mode Test Modules 125
Link Layer Tests 125
Protocol Tests 125

9.4.4. E-link Wrapper 126

9.5. External Software Resources and Tools 126
9.5.1. SCA eXtension — FPGA emulation of the SCA ASIC 126
9.5.2. IC-over-NetIO 126
Appendix A: Setting up a TTC System for use with FELIX 127
A.1. The ALTI System 127
A.1.1. Software Setup 128
A.1.2. Sending TTC Signals with ALTI 128
A.1.3. Testing BUSY signal with ALTI 129

A.2. The TTCvi/TTCvx (A) 129
A.2.1. Tuning a TTC system 132
A.2.2. Guide to TTC Channel B 135
A.2.3. B channel decoding firmware 137
A.2.4. Channel B decoding software 137
A.2.5. Useful documents 137
Appendix B: BNL-712 Technical Information 138
B.1. Overall Design 138
B.2. Fibre Mapping and Connectivity 139
B.2.1. 24 Channel Version 139
B.2.2. 48 Channel Version 140
Appendix C: BNL-711 Technical Information 141
C.1. User Jumper Map and Functional Specification 141
Cl11.]1 142
C1.2.]J2 142
C.1.3.]8 142
C.1.4.JMP1 143
C.1.5.J]MP2 143
C.1.6. JMP3 143
C.1.7. JMPR1 & JMPR2 143

C.2. MiniPOD Connectivity Map 144
Appendix D: Guide to FELIX Data Structures 145
Appendix E: Guide to Using FELIX with the GBT-SCA 148

E.1. Introduction 148

E.2. Typical test setup
E.3. Procedure to set up an E-link to a GBT-SCA
E.4. Low level operations with the fec tool
E.5. A Software Suite for the Radiation Tolerant GBT-SCA - The Production system
E.5.1. OpcUaSca server
E.5.2. ScaSoftware Package
E.6. SCA References
Appendix F: Guide to Using FELIX with the SCA eXtension
F.1. Introduction
F.2. Establishing a Connection between the SCAX and FELIX
F.2.1. General Steps
1. Deploying the SCAX in a pre-existing FPGA design
2. Connecting the SCAX to a GBT-FPGA or a GBTx
3. Configuring FELIX Prior to Connectivity Testing
4. Validating the SCAX’s RX Path
5. Validating the SCAX’s TX Path
6. Connecting the OPC Server
Appendix G: External emulators
G.1. FELIG
G.2. FMEmu
G.2.1. Quick start guide
G.2.2. FMEmu data format and payload

References

148
149
150
150
151
153
154
156
156
157
157
157
158
158
159
159
159
161
161
161
161
162
164

Chapter 1. Welcome to the FELIX User
Manual

1.1. Overview

This document is intended to support all users of the Phase-I FELIX readout infrastructure with
installation, maintenance and operation of their system. The document covers all aspects of the
FELIX system from recommended hardware to firmware and driver installation and maintenance.
Finally the full suite of FELIX software will be presented, including useful test tools leading up to
the primary 'FelixCore' and 'FelixSTAR' dataflow application which is intended to form the
backbone of all data taking sessions. FelixSTAR has been developed to eventually replace FelixCore.
For more information users should consult the following locations for updates:

The FELIX users mailing list:

atlas-tdaqg-felix-users@cern.ch

The FELIX Project Website:

https://atlas-project-felix.web.cern.ch/atlas-project-felix

The FELIX release distribution site:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/

User support requests from users to the FELIX team should be made via the dedicated JIRA project:

https://its.cern.ch/jira/projects/FLXUSERS

o User support via SharePoint has been discontinued. Please report any broken links
of obsolete material to help improve the overall quality of our documentation.

1.2. Document Compatibility

Please refer to the link below to see the compatibility between different, firmware, software, driver
and user manual versions:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

The table in the link above will keep track of the versions of each which should be considered
covered by a given version of this manual. Note - as of Register Map 4 the version number format
for this document was changed to better align with other version numbers in the FELIX release. As
such, the last version which is compatible with RM3 is 0.8x (i.e. in the old numbering).

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/
https://its.cern.ch/jira/projects/FLXUSERS
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

Chapter 2. Introduction to FELIX

FELIX is a new detector readout component developed as part of the ATLAS upgrade effort. FELIX is
designed to act as a data router, receiving packets from detector front-end electronics and sending
them to programmable peers on a commodity high bandwidth network. Whereas previous detector
readout implementations relied on diverse custom hardware platforms, the idea behind FELIX is to
unify all readout across one well supported and flexible platform. Rather than the previous
hardware implementations, detector data processing will instead be implemented in software
hosted by commodity server systems subscribed to FELIX data. From a network perspective FELIX
is designed to be flexible enough to support multiple technologies, including Ethernet and
Infiniband.

Given the general purpose nature of the FELIX effort, the system has also been adopted by several
non-ATLAS projects. This document is therefore targetted at users both within and outside of the
ATLAS upgrade effort.

2.1. FELIX Variants and Functionality

FELIX supports two different link protocols for the transfer of data to and from front-end peers.
Each is supported by the same hardware platform, with separate firmware revisions both based on
the same core modules.

2.1.1. Gigabit Transceiver (GBT) and the Versatile Link

The Gigabit Transceiver (GBT) chipset and associated technologies were developed as part of
CERN’s Radiation Hard Optical Link Project[gbtmainpage]. The goal was to develop a radiation hard
bi-directional link for use in LHC upgrade projects. GBT provides an interface an optical
connectivity technology known as the Versatile link[versatilelink], which provides high bandwidth
and radiation hard transport of data between GBT end points.

The GBT transmission protocol is designed to aggregate multiple lower bandwidth links from front-
end electronics components into one radiation hard high bandwidth data link (running at up to 5
Gb/s). The logical lower bandwidth links which make up a GBT link are known as E-links. The
details of how E-links are supported within the FELIX project are discussed in Section 6.1.5 of this
document.

The GBT protocol has been implemented both in dedicated hardware (e.g. the GBTx chip[GBTx]) as
well as directly on FPGA platforms, the latter of which has been built on for use by the FELIX
project[GBTmanuall].

2.1.2. FULL Mode

Within the context of the ATLAS upgrade (and subsequently externally) a requirement arose for a
higher bandwidth data link from detector to FELIX than was possible with GBT, which has to
support radiation hardness. These newer clients did not require radiation hardness, and were able
to support a protocol which could be implemented in FPGAs on both sides of the link. The resulting
development is known as 'FULL mode'[fullmodespec], referring to full bandwidth.

The FULL mode protocol is a implemented as a single wide data stream with no handshaking or
logical substructure (i.e. no E-links). The reduced constraints mean that FULL mode links can
operate at a line transmission rate of 9.6 Gb/s, which accounting for 8b10b encoding means a
maximum user payload of 7.68 Gb/s.

Note that FULL mode in FELIX is currently only implemented in the from detector to FELIX
direction, as there are currently no requirements for the to detector direction. FELIX FULL mode
variants therefore implement to detector links with the GBT protocol, as this is sufficient for the
required payloads.

2.1.3. Propagation of ATLAS TTC Information

As well as transferring data to and from front-ends, FELIX is also required to interface with the
ATLAS Timing, Trigger and Control (TTC) system. FELIX must provide TTC information both to the
front-ends at full granularity, and to network peers in a reduced form. The propagation of TTC
information to the front-end is performed via dedicated E-links.

Chapter 3. Hardware Requirements and
Setup

3.1. Recommended Hardware Platforms

3.1.1. FPGA 1/O Hardware: VC-709 (Commodity Platform)

The hardware platform recommended for FELIX small scale tests at local test stands is based on the
Xilinx® VC-709 Connectivity Kit [xilinxvc709]. This platform provides 4 optical transceivers
compatible with both GBT and 'full mode' operation as well as a Xilinx® Virtex®-7 series FPGA and
8-lane PCIe Gen 3.0 interface. The TTC interface for the system is provided by the TTCfx v3 FMC
mezzanine card. An image of the VC-709 board and guide to features is presented below.

FMC HPC DDR3 SODIMM
USB-to-UART Connector (10x GTH) 2x B4-bit each User LEDs
Bridge Connector
XADC BPI Paralle! User

Header NOR Flash Dip Switch

e # by () Power Switch

USB JTAG)

Interface

12V Power

SFP/SFP+

Cages (4x GTH) User Pushbuttons

PCle x8 Gen 3 SMA GTH PMBus
(8x GTH) Reference Clock Input Connector

Virtex-7 XC7VX690T- SMA
2FFG1761C FPGA User Clock

Figure 1. The VC-709 development board.

3.1.2. FPGA I/O Hardware: Custom Platforms

The hardware platform chosen for the final FELIX implementation in Phase-I is a custom interface
board designed by BNL. The initial version used for FELIX is known as the BNL-711, with a
modified design (BNL-712) selected for the final system. This section describes the BNL-712, which
is currently the recommended card to use. A description of the BNL-711 can be found in the
Appendix A.

BNL-712

The BNL-712 (a.k.a. BNL-711 v2) is similar to the BNL-711 in that it hosts a Xilinx® Kintex®
UltraScale FPGA on a board capable of supporting 48 high speed optical links via MiniPOD
transceivers, with a 16-lane PCIe Gen 3.0 interface. The BNL-712 is a smaller card, saving space by
not hosting the unused SO-DIMM slots. Various other improvements to the FPGA pin-out to make it

easier to route signals to both PCIe endpoints. In order to make the board compatible with future
developments, the TTC circuitry has been moved to a mezzanine. This makes it possible to connect
both to current ATLAS clock and control systems and candidates for future implementations. An
image of the BNL-712 and its key features are presented below. BNL-712 cards are available for
subdetector test stands for commissioning and integration. A more detailed hardware overview of
the BNL-712 can be found here:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

MiniPOD Sockets (x8)

TTC Mezzanine JTAG Connector

12 V Power
(8-pin PCle
power
connector)

Kintex UltraScale XCKU115 FPGA

MTP 24 or 48 Coupler

PCleGen 3 x 16

Figure 2. The BNL-712 board.

The timing mezzanine for the BNL-712 which is compatible with the ATLAS TTC System in Phase-I is
show in Figure 3.

-)

| 0-AP6 S TIN
il |

\
J
]u—ﬂ—to buo) s
|

A

Figure 3. The ATLAS Phase-I TTC Mezzanine for the BNL-712.

For more detailed information on the BNL-712, please consult the user manual [flx-712].

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

3.1.3. FELIX Host Systems

The current recommended hardware platform for the BNL-712 is based on the following
configuration: CPU: Intel Xeon E5-1660 V4, Motherboard: Supermicro MBD-X10SRW-F [X10SRA-F],
2U Chassis: Supermicro SC825TQC-R740WB, Memory: 32 GB ECC REG DDR4-2400 (in 4 DIMMs).

For use in a lab a 4U high server may be more convenient than a 2U high server (PCle cards are
mounted vertically, which facilitates access). It would also cost less. A Xeon 1650V4 (6 cores @ 3.6
GHz) based machine probably also is fine for lab use, the CPU costs $500 less than the 1660 V4.

The current recommended hardware platform for a VC-709 FELIX system is also based on the
Supermicro® X10SRA-F motherboard [X10SRA-F]. The system should be populated with at least 32
GB of DDR4 RAM and an Intel® Xeon™ E5 family CPU (v3 or v4) with at least six real cores. Since
the VC709 is biggerer than the BNL-712, it requires a 4U Chassis.

Please see the motherboard manufacturer specification for more details.
The full recommendations for the FELIX Server hardware can be found here:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/serverhw.html

3.1.4. Network Configuration

Getting low-latency, high-throughput RDMA communications to work flawlessly usually requires
some specific configuration both on the FELIX hosts and the intermediate network devices.

The recommended solution uses RoCE v2 (RDMA over Converged Ethernet version 2) to implement
RDMA communications. The underlying physical network is a classical Ethernet network. Specific
configurations of the host networking as well as the network switches have to be applied and both
have to co-operate in order to work properly. We make use of DSCP (Differentiated Services Code
Point), an IPv4 QoS mechanism, and Explicit Congestion Notification (ECN), an extension to IP that
allows end-to-end notification of network congestion, to minimize the impact of network issues
inherent to Ethernet.

The recommended network adapter depends on the firmware mode you are using:

* GBT: dual-port 25 GbE Mellanox ConnectX-5 EN SFP28 3.0 x8 (part number: MCX512A-ACAT)
* FULL-mode: dual-port 100 GbE Mellanox ConnectX-5 EN QSFP28 3.0 x16 (part number:
MCX516A-CCAT)

It is recommended to use this network adapters for FELIX data transfer only. Since they will be
tuned to support RDMA communications, other forms of traffic such as control or monitoring may
interfere with the data communications and lead to unpredictable performance degradation.

* Mellanox firmware version: 16.28.2006

* Mellanox and RDMA driver version: MLNX_OFED package 4.7-1.0.0.1 or 4.7-3.2.9.0

Available from Mellanox website

For the configuration of the hosts:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/serverhw.html
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed

* Enable ECN for all priorities:

for i in ‘seq 0 7°; do
VAL="cat /sys/class/net/$IFACE/ecn/roce_np/enable/$i’
if ["x$VAL" = "x1" 1; then
echo 1 > /sys/class/net/$IFACE/ecn/roce_np/enable/$i
fi

VAL="cat /sys/class/net/$IFACE/ecn/roce_rp/enable/$i"

if ["x$VAL" != "x1" 1; then
echo 1 > /sys/class/net/$IFACE/ecn/roce_rp/enable/$i
fi
done

These parameters are not persistent and need to be set after each boot. The openibd service
(Mellanox drivers) provides a post-start hook that can be used for this. Create this file with
permissions as follows and add the previous commands in it (for each Mellanox cards):

$ 1s -1 /etc/infiniband/post-start-hook.sh
-rwxr-xr-x 1 root root 406 Dec 8 13:47 /etc/infiniband/post-start-hook.sh

The recommended network switches are Juniper QFX 5120 or 5200. Please see this Juniper
document for minimum software release. However, based on our tests, we recommend Junos OS
20.2R1 for these two platforms. Please refer to the device documentation for generic configuration
instructions.

The recommended switch configuration consists of:

* creating a dedicated drop profile:
We aim for "continous" congestion notifications as this seemed to work better with shared-
buffer configuration.

drop-profiles {
dp1 {
interpolate {
fill-level [1 90 1;
drop-probability [@ 5];

* partitioning the shared ingress buffer as follows:
40% is assigned to lossless (RoCE) traffic
55% provides extra space for lossless traffic when congestion are signaled
5% is left to other, lossy traffic

https://apps.juniper.net/feature-explorer/feature-info.html?fKey=8593&fn=Remote%20Direct%20Memory%20Access%20(RDMA)%20over%20converged%20Ethernet%20version%202
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=8593&fn=Remote%20Direct%20Memory%20Access%20(RDMA)%20over%20converged%20Ethernet%20version%202
https://www.juniper.net/documentation/product/en_US/junos-os

shared-buffer {
ingress {
buffer-partition lossless {
percent 40;

}

buffer-partition lossy {
percent 5;

}

buffer-partition lossless-headroom {
percent 55;
}

* defining a custom traffic class:
lossless traffic class called "roce" assigned to queue 2

forwarding-classes {
class roce queue-num 2 no-loss;

}

 configuring congestion signalling:
DSCP is configured for Mellanox NICs' default code-points, 110000.
DSCP and PFC are mutually exclusive (per port) on this platform so PFC is left inactive but
visible for the sake of making it clear where to enable it if needed.

congestion-notification-profile {
cnpl {
input {
inactive: jeee-802.1 {
code-point 110 {

pfc;
}
}
dscp {
code-point 110000 {
pfc;
}
}

* binding everything together:
Create a scheduler assigning the drop profile to all traffic
Enable ECN
Assign this scheduler to roce traffic class

Apply all of this to all interfaces

schedulers {
s1 {
drop-profile-map loss-priority any protocol any drop-profile dp1;
explicit-congestion-notification;

}
by
scheduler-maps {
sml {
forwarding-class roce scheduler s1;
}
}
interfaces {
et-0/0/* {
congestion-notification-profile cnpl;
scheduler-map smi;
unit 0 {
forwarding-class roce;
}
}
¥

3.2. Installation of VC-709

For full details regarding the VC-709 please consult the manual provided with your equipment. In
terms of installing the card into a FELIX system please follow the following guidelines. The VC-709
should be installed into an 8-lane or 16-lane Gen 3 PCle slot on the host motherboard, taking into
account the need for clearance on all sides. The board must be connected to power from the
system’s internal ATA power supply via a custom Molex adapter provided with the board. The
power socket on the board is shown on the upper right hand corner of Figure 1, labelled '12V
Power'. Ensure that the power switch, just above the socket, is switched to the on position.

The FPGA aboard the VC-709 is configured via an on-board JTAG programmer, which can be
connected to a mini-USB cable with the 'USB JTAG Interface' on the top left of Figure 1. A right
angled mini-USB connector is recommended to minimise obstruction of the hosts case lid, although
a straight cable is provided for free with your Kkit. Note that this has currently only been tested for
USB2, which is the recommended interface. In order to be able to program the card please connect
it to a convenient USB port on your host machine, or to another machine which you wish to use as a
programming server. Finally, ensure that the link transceivers are safely inserted into the on-board
cages.

3.3. Installation of BNL-711 and BNL-712

The BNL-711/712 should be installed in a 16-lane Gen 3 PCle slot on the host motherboard. The
board must be connected to power from the system’s internal ATA power supply via an 6-pin
(recommended) or 8-pin PCle power connector (of the type commonly used for graphics cards).

Note that the board does not support use of Xilinx power connectors.

The BNL-711/712 provides a JTAG connector to which programmers can be connected for FPGA
configuration. The Digilent® HS2 programmer is recommended for this purpose. While this
programmer fits comfortably into the 4U chassis, the 2U chasses will need an additional flexible
adapter. For the 2U chassis, the programmer can be used with a flexible cable fabricated from the
Digilent XUP flywire assembly and a pin header. Aboard the BNL-711/712 are a series of jumpers to
permit users to reconfigure various I/O properties of the board. For a full specification of these
please consult this section for the BNL-711 and the user manual of the BNL-712 [flx-712]. The Figure
14 and Figure 17 in the BNL-712 user manual show the mapping for on-board 24-ch or 48-ch fibers,
which are for 24-ch and 48-ch cards separately.

3.4. Connecting to an existing TTC system

This section is only relevant to users who wish to connect their FELIX system to a ATLAS TTC
infrastructure. Other users should skip this section and proceed directly to clock configuration.

3.4.1. VC-709 Only: TTCfx v3 Overview and Installation

For VC-709 systems the TTCfx mezzanine card [CERN_TTC_FMC] is designed to connect your FELIX
card to the ATLAS TTC system as used throughout Run 1-3 operations [ttc]. BNL-711/712 systems do
not require this component as the same logic is implemented on the BNL-711/712 itself. The TTCfX is
a small FMC mezzanine card, as shown in Figure 4, which can be attached to the VC-709 via the
single FMC slot on-board (top left of Figure 1).

E204460
Mi1 S 94V-0

cbiow®

QcCa
PMI

FELIX CLK DISTRIBUTION - WEIZMANN INSTITUTE OF SCIENCE

Figure 4. Image of a TTCfx v3 card.

To complete the installation, you must then connect the P and N SMA GTH Reference Clock inputs
on the VC-709 (middle bottom of Figure 1) to the SMA connectors on the TTCfx v3 (P to P and N to N)
via suitable SMA cables, " The right angle side goes on the VC-709, to make the cable bending a bit
more gentle. If you have space in your chassis, straight SMAs on both ends will do the job as well.

The TTCfx mezzanine card requires no specific firmware programming, and should work out of the
box once connected to a TTC peer and a software configuration script is run. More detail is
provided in the next section.

3.4.2. Connecting TTC and BUSY

This section assumes you are connecting a TTCvx-based system to FELIX. Notes on setting up such a
system are available here. Once set up, connect a TTC output from the TTCvx to the TTCfx v3 using a
Multi-Mode fibre with ST connectors. The connector on the TTCfx v3 end is visible in Figure 4, on
the upper left hand side. On the BNL-711 the ST and LEMO connectors are located on the upper left
part of the board, as shown in Figure 43. On the BNL-712 they are integrated into the TTC
mezzanine, as shown in Figure 2.

Finally, use a LEMO connector to connect the TTCfx v3 or BNL-711/712 to a destination for BUSY
signals (as per your use case). The connector on the TTCfx v3 is visible in Figure 4 on the upper
right hand side. The BUSY signal is the ATLAS standard open-collector BUSY signal, but with a weak
24 kOhm pull-up to 5 V to allow viewing on an oscilloscope.

3.5. Configuring FELIX Clock

This section assumes you have set up the FELIX software infrastructure as in Section 5. If you have
not, then please do so before proceeding.

3.5.1. Clock Source Selection

FELIX requires a clock source in order to synchronise propagation of signals both within the FPGA
and to external peers. The FELIX firmware supports the use of both a received clock from an
external TTC source as well as an internally generated clock for users who don’t need or have
access to a such a system.

On reset, the local clock is selected by default. The TTC clock source can be selected using the
following command:

flx-config set MMCM_MAIN_LCLK_SEL=0x0

It is also possible to select your clock source via the elinkconfig graphical tool. More information on
this feature will be provided in Section 6.1.1.3.

To view the overall clock status, one can run the FELIX info tool, or flx-info. This can be run with
no command line parameters to dump summary information for your board as follows:

flx-info

Clock settings can then be viewed in the Clock resources section of the output, shown here:

Clock resources

MAIN clock source : LCLK fixed
Internal PLL Lock . YES
ADN2814 TTC Status : ON

The TTC clock is successfully configured when the 'Clock resources' section looks like this:

Clock resources

MAIN clock source : TTC fixed
Internal PLL Lock : YES
ADN2814 TTC Status : ON

3.5.2. TTC Clock Recovery: ADN2814

Should you wish to use a TTC clock source, you must next check that your FELIX board’s ADN2814
clock recovery chip[ADN2814] is functioning correctly. Non-TTC users can skip this section.

The overall status of your ADN2814 is reported in the Clock resources report from flx-info as
shown in the previous section. For more detail on the chip’s status, run with the following extra
parameter:

flx-info ADN2814

If your chip is functioning correctly, and you have a TTC system connected, you should see output
like this:

$ flx-info adn2814

This is an FLX-712

TTC Status: ON

Loss of Signal Status: 0
Static Loss of Lock: @
Loss of Lock Status: 0

If the output differs (e.g. if you see a loss of lock reported) please check your connections before
resetting the ADN2814 using the following:

flx-reset ADN2814

3.5.3. Clock Jitter Cleaning

Whether you are using an internal or external clock, the signal must be cleaned to minimise jitter
and ensure stable performance. FELIX uses one of two dedicated chips for jitter cleaning depending
on your clock source and hardware.

TTC clocks should be cleaned by the Si5345 chip[Si5345], which is hosted by the TTCfx v3 for VC-709
systems as well as on-board the BNL-711/712. Non-TTC clocks can also be cleaned by the Si5345, but
for those who don’t have a TTCfx v3 the VC-709 also hosts a different cleaning chip, the
Si5324[S15324], which offers sufficient jitter correction for the non-TTC case.

The Si5324 is currently only supported with a dedicated firmware build for those
wishing to connect optical links to FELIX using the FULL mode protocol. Users of

o GBT must have a Si5345-based system. Should you wish to use the Si5324 please
make sure to check the filename of the firmware tarball provided on the FELIX
firmware distribution site to ensure the name of the cleaner is present.

Whichever your use case, your FELIX card must be configured to the correct jitter cleaner in order
to function correctly. This can be achieved using the flx-init command line application without any
arguments. The flx-init utility will automatically detect the used jitter cleaner and initialize it
accordingly.

3.6. Connecting and Initialising Optical Links

Assuming you have set up your FELIX clocks specified above for your use case, set up the FELIX
software environment as described in Section 5 and programmed the FPGA aboard your VC-709 or
BNL-711/712 as described in Section 4 you are now nearly ready to attempt to connect the system to
a peer via optical link using either GBT or FULL mode protocols.

To see the mapping between the Xilinx FPGA transceiver pins and the female MTP fiber connector
inserted into the MTP adapter, please see appendix of this manual, or Appendix C of the FLX-712
(BNL-711 V2) Manual:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

The first step to bringing up your links is to connect your fibres to the transceivers aboard the VC-
709 or BNL-711/712, ensuring not to place excessive strain on them. Once the connectors are
properly seated, you can check the physical status of your links.

3.6.1. Physical Link Layer Status: VC-709

In order to check the status of your physical connections for a VC-709 (which are SFP based) run the
following:

flx-info SFP
Look for the line marked 'Link Status' in the output:

$ flx-info sfp
This is an FLX-709

Link Status | Ok Ok Ok Ok

3.6.2. Physical Link Layer Status: BNL-711/712

In order to check the status of your physical connections for a BNL-711/712 (which are MiniPOD
based) run the following:

flx-info POD

There will be many lines of output, but you should check the section labelled MiniP0Ds as shown
below:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

MiniPODs

Only the 8 active MiniPODs will be shown
NOTE: The MiniPODs of both devices will be shown

| 1st X | 1st RX | 2nd TX | 2nd RX | 3rd TX | 3rd RX | 4th TX |
4th RX |

Temperature [C]| 49 | 52 | 46 | 46 | 54 | 50 | 49 |
49 |

3.3vee [Vl] 3.24| 3.29 | 3.27| 3.28| 3.26| 3.30| 3.26 |
3.31 |

2.5VCC [VI| 2.42 | 2.40 | 2.44 | 2.42 | 2.42 | 2.44 | 2.44 |
2.43 |

How to the read the table below:

= FLX Llink endpoint OK (no LOS)

- = FLX link endpoint not OK (LOS)

First letter: Current channel status

Second letter: Latched channel status

Example: #(-) means channel had lost the signal in the past but the signal is present
now.

Latched / current link status of channel:

I e | 1] 2] 31 41 51 61 71 81 9| 10

o

[P Oy Oy ey O P
e T8 =00 =0 1 =0 | =) | =) [=) [=03 [) [G | =) | =)
S B 1 00 (0 1 =0 | =) | =) [=) | 4680 | %60 | £ | e | 30
20 T8) 3 1) | 3 1) 1) 1) 1) 1 63 1 =) | =)
S B~ 1= 1= 1= | =3] =) [=03 | =Y 1 =) =) | -
ST = 1 =) 1) 1) | 63 1) [=603 1) 1) 1 =) -
S 88 =00 | (03 1 =0 | =) [=) [=) [=) [=3 | =) | = | =)
0 T8 -0 =0 1) | =) 1 =) [=) [) [) 1 3 | =) | =)
:4tﬁié% i NE WIS S Y I W Y I O) (I Y G S RIS R

If your physical link is working correctly you should see loss of latch status '#' for the relevant
MiniPOD RX (receive) or TX (transmit). For a physical map of MiniPOD locations please consult this

section (same for both BNL-711 and BNL-712).

3.6.3. Logical Link Layer Initialisation

Once you have established a successful physical connection, the next step depends on your choice
of logical protocol.

If you are connecting with GBT you will need to train the links to bring them up by running the
following:

flx-init

This should run reporting no errors. You can then print the status of your GBT as well as FULL
mode links with:

flx-info GBT

The results should look like this (this is for a BNL-712 with 24-channel firmware):

$ flx-info gbt

This is an FLX-712

LINK CHANNEL ALIGNMENT STATUS (entire FLX-712/711):

Channel | 0 1 2 3 4 5 6 7 8 9 10 M

Aligned | YES YES YES YES YES YES YES YES VYES YES VYES VYES

For GBT mode firmware: If this looks correct your GBT links should now be fully operational
(configured, trained and locked).

For FULL mode firmware: The links of the front-end must be up before issuing flx-init, if the
Frontend links require a stable link from FELIX for clock recovery, the FELIX receiver will not lock
immediately. Therefore, if the link allignment shows "NO" for one or more links, issue the following
command. flx-reset GTH, followed by flx-info GBT to check the link status again.

Before attempting to transfer data please ensure you have followed the guide in Section 6.1 for
details on how to configure your E-links.

[1] An example SMA cable can be found here: https://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600?
qs=sGAEpiMZZMvIULLAfKm5f6h8NuxRC2d]

https://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600?qs=sGAEpiMZZMv9ULLAfKm5f6h8NuxRC2dJ
https://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600?qs=sGAEpiMZZMv9ULLAfKm5f6h8NuxRC2dJ

Chapter 4. Firmware Releases and
Programming

4.1. Firmware Distribution Protocol

4.1.1. Release Announcements and Distribution
FELIX firmware (and software) releases will be announced on the following e-group:
atlas-tdaqg-felix-users@cern.ch

Please subscribe to this group to stay up to date with the latest updates. All new releases will
include a detailed change list and reference to the associated version of this user manual.

For a full list of releases, please see:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

The release page includes links to tarballs of firmware releases (containing both .bit and .mcs files)
are made available. Versioning information is available in the on-site 'bitfiles_change_log.md’,
please download the latest version as indicated.

all recent firmware revisions are labelled 'CLKSELECT' to indicate that they

o support both dual TTC and local clock sources. Older revisions were dedicated to
one clock or another, but these should now be considered deprecated. Please
upgrade to a newer revision if you have such a version.

4.1.2. Supported Link Protocols & Encoding

FELIX firmware builds currently support the following link protocols and encoding options as part
of the standard release.

Mode Support
GBT Normal Mode 8b/10b Y
GBT Normal Mode HDLC Y
GBT Normal Mode Direct N
GBT Wide Mode N
FULL Mode Y

For the VC 709 (miniFELIX) bitfiles are released depending on two different Jitter Cleaners. If the
TTCfx3 mezzanine card is installed, the Si5345 on the mezzanine can be used, and the TTC clock can
optionally be selected as an input clock through elinkconfig. For FELIX users who don’t have the
TTCfx3 mezzanine, we provide a special firmware build which supports the Si5324 jitter cleaner on
the VC709 board.

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

The version with Si5324 support can be recognized with the SI5324 keyword in the archive
filename:

FLX709_FULLMODE_4CH_CLKSELECT_GIT _master_rm-4.9_278_200619_14_13.tar.gz: TTCfx3 / Si5345
support

FLX709_FULLMODE_4CH_CLKSELECT_SI5324_GIT _master_rm-4.9_278 200619_05_38.tar.gz: VC709
standalone / Si5324 support

4.2. Firmware Programming

The FPGAs aboard both the VC-709 and BNL can be programmed directly via a JTAG interface using
the Vivado™ software suite[vivado2016]. For the VC-709 this method also makes possible to
program the on-board FLASH ROM. A configuration programmed into the FPGA directly will be lost
if the machine is switched off, whereas a configuration programmed in the FLASH will persist. This
will make it possible to retain the desired programming state of the card e.g. if transported. This
section will describe how to program the card using all available methods.

4.2.1. JTAG Connectivity

The VC-709 comes with an on-board JTAG programmer, accessible via USB, as described in Section
3. The BNL-711/712 does not have an on-board programmer, and as such you will need to acquire a
USB-accessible programmer. The FELIX developers recommend the Digilent® HS2 for this purpose.

4.2.2. Setting up the Vivado™ Suite

Specific installation instructions for the Vivado™ suite are provided with your development Kit.
Note that the instructions in this section are compatible with the 2014, 2015 and 2016 releases of
the suite. We recommend you install the software locally on the PC you wish to use as your
programming server. This should be connected to your VC-709 in your FELIX host via USB as
described in Section 3.2. When you first connect your system via USB you will need to run a Xilinx”
setup script to configure the bus properly (path may vary depending on product year):

source Xilinx/Vivado/2018.1/data/xicom/cable_drivers/lin64/digilent/install_digilent.sh
The Vivado™ environment can be started with the following commands:

source Xilinx/Vivado/2018.1/settingsb4.sh
vivado &

You will then be presented with the Vivado splash screen, where you should select 'Open
Hardware Manager' as shown in the red box in Figure 5.

¢ Vivado 2015.4@pc-tbed-felix-03.cern.ch - O X

File Flow Tools Window Help

VlVADO’ Productivity. Multiplied.

Q- search commands |

XILINX

ALL PROGRAMMABLE.

Quick Start
CUR -
Createl.Lrsj;a-t\nﬁmject Op;an Praject Open Example Project
Tasks
g #
M;nage IP Qpen Hardwre Manager Xilinx Tcl 5tore

Information Center

Documentation and Tutorials Quick Take Yidens Felease Mates Cuide

& Tl Consale |

Figure 5. Vivado™ Splash Screen.

From the hardware manager select 'Open Target' on the top left as shown in Figure 6 and choose
'Open New Target'.

File Edit Flow Tools Window Layout View Help
a2 ;o B B X % | S |[= Default Layout | e R &
Hardware Manager - unconne

Open target

Hardware — O ® X | DebugProbes _ 0O * X
AZ=HE>»E A < $[E

Name |

() Mo hardware target is open.

Figure 6. Vivado™ Hardware Manager.

From this point, select 'Next' on the following screen and 'Connect to Local Server' after that, once
again press 'Next'. This should bring you to the hardware list. On this screen select the FPGA on
your VC-709 or BNL-711/712 from the uppermost list (if you have only one board there should be

only one entry, if not, find yours in the list by name). The screen you will see is shown in Figure 7.

Once you have found your FPGA and selected it press 'Next' on the bottom right and 'Finish' on the
following screen.

¢ Open New Hardware Target@pc-tbed-felix-03.cern.ch *

Select Hardware Target
Select a hardware target from the list of available targets, then set the appropriate JTAGC clock (TCK) frequency. If waou do not '
see the expected devices, decrease the frequency ar select a different target.

Hardware Targets

Tvpe | Kame | ITAG Clock Frequency |

E xilinx_tct Digilentf2 L0Z0ZADZ7ASA 15000000 -
B wiliny_tef Xilinx/0000162 787801 E000000 - @

Hardware Devices (for unknown dewices, specify the Instruction Register {IR) length)

Mame | IDcCode | IR Length |
@ HcTWHEA01_0 23691093 &

Hardware server. localhost:2121

| < Back ” MNext =]| Finish || Cancel J

Figure 7. Vivado™ Target Selector with VC-709’s Virtex7 FPGA selected, as indicated by red arrow (FPGA ID
will vary from model to model). The BNL-711/712’s Kintex Ultrascale FPGA will appear as xkcul15_0

From here, you will be taken to the main programming interface, as shown in Figure 8. You are
now ready to program your FPGA or FLASH.

¢ Vivado 20154@pc-tbed-felix-03.cern.ch - O X

File Edit Flow Tools Window Layout Yiew Help [search commands |
@“ﬂ adB R X |%|@|%Default Layout bl & \|®Dashboardv|©
Hardware Manager - localhost/xiline_1cf/Xiling /0000163 7E7E01 x

@ There are no debug cores. Program device Eefresh device

|Hardware] | el |

B p»E
| __ Name] Sta
@ B localhost (2) Cannec
B wiling_tof/Digilent /2 10203 A03 7454 (1) Closed;
e xilinx_tef Xiling /0000162787801 (1) Open
GG HCTVHEA0N_0 (1) Prograt
L g xADC (Systermn Maonitor) |

51 pag
iy A

Lilh_ﬂﬂ_

Select an ohject ta see properties

| Tel Consale] e
E INFO: [Labtoolstc] 44-466] Opening hw_target localhost:3121/%11nx_tcfH011nx/00001637878 01 al
o S current_tw_dewice [1index [get_hw_dewices] O]

L '\ refresh_hw_device -update_hw probes false [1index [get_hw _devices] O]

|] EINFD: [Labtools 27-1434] Device xc7wxB90T (1TAG device index = 03 is programmed with a design that has no supported debug cores) in it
&l EWARNING: [Labtools 27-3123] The debug hub core was not detected at User Scan Chain 1 or 3.

& i Resolution:

= i1. Make sure the clock connected to the debug hub (dbg_hub) core is a free running clock and is active OR

ﬂ [2 Manually launch hw_server with -g "set xsdb-user-bscan <C_USER_SCAN_CHAIN scan_chain_numbers" to detect the debug hub at User Scan

L

'T'_-v-'pe a Tcl command here

Tcl Console) Messages % Serial IfO Links [E Serial /0 Scans

Qpen ||:|

Figure 8. Vivado™ Programming Interface.

4.2.3. Programming the FPGA Directly

To program an FPGA directly, select it from the device list on the main programming window (as
shown in Figure 9, right click and select 'Program Device'.

¢ Vivado 20154@pc-tbed-felix-03.cern.ch - O X

File Edit Flow Tools Window Layout Yiew Help [Q- search commands |
B‘ha ;R X |g|@|§Default Layout - |' & &|®Dashboardv |@
Hardware Mar_lager - JocaIh0s_t,_fx_ilir]x__tcfj)(ilinx{QOOO_lGB?8?8_f01 X

@ There are no debug cores. Prodram device Refresh dewvice
-'.-g:;:[:] L?XI |

[) 1 s
'@ F localhost (2) Conner
@ e wiling_tcf/Digilentj2 10203 A03 7 A5 A () Closed;

p-@e xiling_tocf Xiling 0000162787801 (1) Open
o A T) - : -
|_§ ¥ADC (System Monitar) [Hardware Device Properties... Ctri+E

& Program Device. .
@ Refresh Device

| 4 add Configuration Memory Device.

| Hardware Device Properties Boot from Configuration Memory Device

G _' Program BER Key...
® ¥CTVRE0L 0 Clear BBR Key...
= Program eFUSE Registers...

Mame: HCTWHES0T_0 Expart to Spreadsheet. .

Part: KOAWHESOT =

1D code: 33691093 |

IR length: 5

[9 — [[+]00]

General FProperties
| Tcl Consale =) (e
Z gi_INFD: [Labtoolstcl 44-466] Opening hw_target Tocalhost: 3121 %1 1in_tof A0 110k 000163787501 e
e scurrent_hw_device [Tindex [get_hw_dewices] O]

Lo '\ refresh_hw_device -update_hw probes false [lTindex [get_hw_devices] 0]
|] i INFO: [Labtools 27-1434] Device xc7wx690t (ITAG device index = 0) is programmed with a design that has no supported debug core(s) in it
DWARNING: [Labtools 27-3123] The debug hub core was not detected at User Scan Chain 1 or 3.

& { Resolution:
£ 1 Make =sure the clock connected to the debug hub (dhg_hub) core is a free running clock and is active OR
ﬂ 2. Manually Taunch hw_server with -e "set xsdb-user-bscan <C_USER_SCAN_CHAIN scan_chain_numbers=" to detect the debug hub at User Scan
J
4

'T'_-v-'r_!e a Tcl command here

= Td Console (© Messages % Serial If0 Links [Serial /0 Scans
Program hardware device with specified hitstream | |:|

Figure 9. Selecting Device to Program.

You will now be asked to select a .bit file as shown in Figure 10. This is available in the firmware
release tarball as specified at the start of this chapter. You do not need to select a debug probes file.
Once a file has been chosen, select 'Program' on the bottom right to write the file to the FPGA. Once
complete your FPGA should now be fully reprogrammed.

;.' Program Device@pc-tbed-felix-03.cern.ch X

Select a hitstream programming file and download it to wour hardware device. You can optionally select a debug

probes file that correspands to the debug cores contained in the bitstream programming file. ‘
]. Bitstream file: |,fafs,fcern.|:hjuser,fjjjpandurn,fFLK?OQ_RM0302_4CH_,&LITOCLK_SVN4001_161026_14_39 ||:J
| Debug probes file: | | =

[#] Enahle end of startup check

Program] | Cancel

L e — — — e i K - i . B i i i LA

Figure 10. Selecting Bit file to Program.

4.2.4. Programming the FLASH ROM (VC-709)

To program the FLASH ROM start once again from the main programming window. Find and right
click on your FPGA and select 'Add Configuration Memory Device' in the list, as shown in Figure 11

¢ Vivado 20154@pc-tbed-felix-03.cern.ch - O X

File Edit Flow Tools Window Layout Yiew Help [Q- search commands |
BJEQ tEER X |%|@|§Default Layout - |' & R|®Dashboardv |@
Hardware Mar_lager - JocaIh0s_t,_fx_ilir]x__tcfj)(ilinx{QOOO_lGB?8?8_f01 X

@ There are no debug cores. Prodram device Refresh dewvice

|Hardware s A |
= =

} | Sta

'@ B localhost (2) Caonnes

B xiling_tcf/Digilentj2 10203 A03 7 A5 A (1) Closed;

P—!@ wilinx _tef Sling /0000163787801 (1) Open
ol A Ol - i .
I_ﬁ XADC (Systern Manitd | Hardware Device Properties. . Ctri+E

& Program Device. .
| @ Refresh Device
L‘_I_MJ._ & Add Configuration Memory Device. .

| Hardware Device Properties Boot fram Configuration Memory Device

== Program EBR Kew...

@ xCTVHBI0L0 Clear BBE Key...

= Program eFUUSE Fegisters...
Mame: K7W 6301_0 Expart to Spreadshest...

Part: KOAWHES0T =

1D code: 33691093 |

IR length: 6 =]

< DE

General Froperties
| Tcl Consale =) (e
A L INFO: [Labtoolstcl 44-466] Opening hw_target Tocalhost: 312111 nx_tcfXi11nx 0000163787801 A

z §current_hw_dev1’ce [Tindex [get_hw_dewices] O]

= Cirefresh_tw_device -update_hw_probes false [lindex [get_hw _devices] 0]

|]|] EINFD: [Labtools 27-1434] Device xc7vxB90t (JITAGC device index = 03 is programmed with a design that has no supported debug coreds) in it
-=_| EWARNING: [Labtools 27-3123] The debug hub core was not detected at User Scan Chain 1 or 3.

et : Resolution:

£ i1, Make sure the clock connected to the debug hub (dbg_hub) core is a free running clock and is active OR

ﬂ (2 Manually Taunch hw_server with -e "set xsdh-user-bscan <C_USEE_SCAN_CHAIN scan_chain_number>" to detect the debug hub at User Scan

J
4
'T'_-v-'r_!e a Tcl command here
Tcl Console) Messages s Serial I/0 Links Serial 10 Scans
Add a Canfiguration Memaory Device | |:|

Figure 11. Select Vivado™ Flash Programming Dialog.

From here you will be taken to the a dialog requesting that you select the memory device you wish
to program. On the VC-709 this will typically be a Micron memory device with given parameters. To
find it quickly enter the criteria demonstrated in Figure 12 and select the device as shown. Look for
the device with alias '28f00ag18f".

Device: @ xc7w6901_0

¢ Add Configuration Memory Device@pc-tbed-felix-03.cern.ch

ﬁ Choose a configuration memaory part. This can be changed later.
=

Filter
Manufacturer |rv1icron v| Type |bpi v|
Density (Wb 1024 ~ | wickth [x16 ~ |
| Eeset All Filters
Select Configuration Memory Part
Search: [C- |
Marre Part [Manufacturer| Alias | Famil Twpe |Density iMby| width |
% 28f00am2 Sew-bpi-x 16 28f00am2 Sew Micron me2 Sew bpi 1024 ®16
& 28f00ap3 0b-bpi-x16 2Bf00ap20b Micron P30 bpi 1024 ®16
& 28f00ap3 0e-hpi-x16 2Bf00apz0e Micron pEo bpi 1024 ¥le
@ 2E8f00ap3 M-bpi-x16 2Bf00apZ 0t Micron pE0 bpi 1024 ¥16
& mt2 Bewilga-hpi-x 16 mt28ewdlga Micron mt2 Bew bpi 1024 #1e
% mt28gudlgaaxle-hpi-x16 mi28gudlgaaxle Micron 28f00aglef gls bpi 1024 ®1e
Ok] | Cancel

Figure 12. Memory Device Selection Interface.

Once selected, press 'Ok’ on the bottom right and 'Ok’ again on the following window asking 'Do you
want to program the configuration memory device now?'. On the subsequent dialog, choose the
.mcs file you wish to program (provided with your firmware release) as shown in Figure 13. Select
'Ok’ at the bottom to program the FLASH. Once complete your card should be programmed with a
non-volatile firmware installation that will survive loss of power to the host.

¢ Program Configuration Memory Device@pc-tbed-felix-03.cern.ch >
Select a configuration file and set programming options. ‘
Memory Device: |® mit28gudlgaaxle-bpi-x16 | [:J
Configuration file; |'user,.fj;jpanduerFL}(?Og_RM0302_4CH_AJ_ITOCLK_SVN4001_161026_14_39.mcs ||:J
PRM file: | M
State of non-config mem [0 pins:
Program Operations
Arddress Range: |Cunfiguratiun File Qnly >
RS Pins:
¥ Erase
] Blank Check
] Program
¥ W erify
[%erify Checksum
SWFE Options
[] Create 5%F Only (no program operations)
SVF File: | (-]
(6],] | Cancel I | Applhy

Figure 13. Selecting .mcs file to program.

4.2.5. Programming the FLASH ROM (BNL-711/712)

FLASH programming for the BNL-711/712 is done by means of the fflashprog application, which is
provided as part of the FELIX software suite. Please consult the instructions provided in Section
6.4.9. Note that the BNL-711/712 has 4 different FLASH partitions which can be programmed with 4
different firmware images. The board will by default come up from powercycle loaded from the
partition specified by the jumper configuration described in [app:bnl711]. Please ensure you
program the correct sector in order to see the expected image loaded. If required, the firmware
image from another partition can be loaded into the card after power-on using the fflash
application (see Section 6.4.8).

4.2.6. Enabling new FPGA Configuration

If you have programmed our FPGA directly, please soft reboot your machine to pick up the new
configuration. For changes to the FLASH ROM a full powercycle may be needed to pick up the new
firmware, unless you have manually programmed the FPGA from FLASH as described in Section
6.4.8. In the latter case a soft reboot will be sufficient.

PCIe hotplug procedure

Should you wish to avoid rebooting your machine (assuming a powercycle isn’t required) it is
possible to rescan the PCle bus re-synchronise with the new firmware image. Note that this
procedure is not stable under all circumstances, and may produce inconsistent results. This
procedure should only be attempted if a reboot is prohibited. First load the firmware using Vivado
software over the USB programming cable. Next detach the PCI devices using the command:

pcie_hotplug_remove.sh
After this step, the PCI devices can be rescanned and reattached using the command:
pcie_hotplug_rescan.sh

The last step also restarts the TDAQ drivers. The software for detach / rescan can be found in the
felix software library, "pcie_hotplug" package.

This procedure works for the VC 709 card on both PEX 8732 and PEX 8747 bridges.

For the BNL 712, there are come caveats: the procedure will fail if the same firmware is uploaded as
was already on the BNL 712 card; the procedure will also fail if GBT firmware is loaded on a card
which already had Full Mode firmware loaded. Finally, if the PCI detach fails, this condition is
reflected in the PCI tree and can be seen with a simple command like Ispci. Re-execution of PCI
detach after a second is usually successful.

It is well known that the PCI subsystem of CC7 can be problematic, depending on the kernel
version. This procedure was tested to work with Centos7.7 kernel 3.10.0-1062.4.3.el7.x86_64, as well
as the more recent kernel v5.00.%, but is not guaranteed to work with all intermediate kernels.

Chapter 5. Software Distribution and
Installation

5.1. Software Distribution Protocol

5.1.1. Pre-requisites

FELIX software is formally supported for systems using the CentOS 7 operating system.

5.1.2. Release Announcements and Distribution
FELIX software (and firmware) releases will be announced on the following e-group:
atlas-tdaqg-felix-users@cern.ch

Please subscribe to this group to stay up to date with the latest updates. All new releases will
include a detailed change list and reference to the associated version of this user manual.

For a full list of releases, as well as download information, please see:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

Here users will be able to find the latest firmware and software. The newest recommended version
is marked in all cases. Installation instructions for the software suite and driver can be found
below.

FELIX Driver

The latest version of the FELIX driver is available on the distribution site within 'software/drivers'.
For driver release notes and installation details, please refer to

Driver release notes

FELIX Software Suite

The latest version of the FELIX software suite is available on the distribution site in within
'software/apps'. The software release is provided as in tarball and rpm forms to suit different use
cases. A docker image with the release pre-installed is also available.

5.2. Software Installation Instructions

5.2.1. Driver RPM Installation Instructions

DKMS

The FELIX driver makes use of 'Dynamic Kernel Module Support' (DKMS) to automatically track
kernel changes once installed. Users should therefore only need to change their installation if a new

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/driver/felix_driver.pdf

version of the driver itself is released.

Removal of Existing Driver Installations

In order to update the FELIX driver it will first be necessary to remove any existing driver
installations from your system. To do this please follow the procedure outlined below. You will
require superuser privileges in order to perform the driver de-installation itself and subsequent
cleanup.

To check if a driver is already installed issue the following command:
rpm -qa | grep tdaq

If a driver rpm is installed you’ll see a response along the lines of:
tdaq_sw_for_F1x-4.3.0-2dkms.noarch

To remove the driver do the following (substituting 'filename' for the results of the search in the
previous step):

rpm -e filename

Once this operation is complete you will be in a position to install the latest FELIX driver.

Installation of New Driver
To install the FELIX driver RPM, run the following command (superuser privileges required):
yum install tdaq_sw_for_F1x-4.3.0-2dkms.noarch.rpm

(this should take 1-2 minutes to complete, due to the need to compile the driver for your kernel as
per the DKMS framework)

Once the driver is installed you should start it as follows (as superuser):
./ete/init.d/drivers_flx start

Once started you can check the status of the card using:

cat /proc/flx

You should see output similar to what is shown below (will vary depending on your firmware
version(s) and the number of cards in your system; here 2 cards are installed):

$ cat /proc/flx
FLX driver 4.3.0 for RM4 F/W and TDAQ release tdaq710_for_felix_4.3.0. Distributed
with driver RPM 4.3.0

Debug =0

Number of devices detected

1
S

Locked resources
device | global_locks

0| 0x00000000
1| 0x00000000
2 | 0x00000000
3| 0x00000000

Locked resources
device | resource bit |

Device 0:

Card type

Device type

FPGA_DNA

Reg Map Version

GIT tag

BUILD Date and time

GIT commit number

GIT hash

Firmware mode

Number of descriptors
Number of interrupts
Interrupt count | 0 |
0|

Interrupt flag | 0 |
0|

Interrupt mask | 1|
1]
MSI-X PBA 00000000
Device 1:

Card type

Device type

FPGA_DNA

Reg Map Version

GIT tag

BUILD Date and time

GIT commit number

GIT hash

Firmware mode

Number of descriptors
Number of interrupts

Interrupt count | 0 |
0|

Interrupt flag | 0 |
0|

Interrupt mask | 1|
1]

MSI-X PBA 00000000
Device 2:

Card type

: FLX-712

1 0x0427

: 0x0105968534800345
1 4.8

: rm-4.8

1 22-10-2019 at 11h02
1 46

: Oxdc11cebb

: GBT

: FLX-712

1 0x0428

1 0x0105968534800345
1 4.8

: rm-4.8

1 22-10-2019 at 11h02
1 46

: Oxdc11cebb

: GBT

12

¢ FLX-711

Device type
FPGA_DNA

Reg Map Version

GIT tag

BUILD Date and time
GIT commit number
GIT hash

Firmware mode

Number of descriptors 2

Number of interrupts 8

Interrupt count | 0 | 0 | 0 | 0 | 0 | 0 |
0|

Interrupt flag | 0 | 0 | 0 | 0 | 0 | 0 |
0|

Interrupt mask | 1| 1| 1| 1| 1| 1|
1

MSI-X PBA 00000000

Device 3:

Card type : FLX-711

Device type 1 0x7039

FPGA_DNA : 0x0105122244b0c205

Reg Map Version : 4.5

GIT tag : rm-4.5

BUILD Date and time : 5-7-2019 at 15h37

GIT commit number : 198

GIT hash : 0xb2f51706

Firmware mode : Unknown (firmware_mode = 7)

Number of descriptors 22

Number of interrupts 8

Interrupt count | 0 | 0 | 0 | 0 | 0 | 0 |
0|

Interrupt flag | 0 | 0 | 0 | 0 | 0 | 0 |
0|

Interrupt mask | 1| 1| 1| 1| 1| 1|
1]

MSI-X PBA 00000000

The command 'echo <action> > /proc/flx', executed as root,

allows you to interact with the driver. Possible actions are:

debug -> Enable debugging

nodebug -> Disable debugging

elog -> Log errors to /var/log/message

noelog -> Do not log errors to /var/log/message

rm3 -> Enable compatibility with RM3 F/W

rmd -> Disable compatibility with RM3 F/W

swap -> Enable automatic swapping of 0x7038 / 0x7039 and 0x427 / 0x428

noswap -> Disable automatic swapping of 0x7038 / 0x7039 and 0x427 / 0x428

. 0x7038

1 0x0105122244b0c205

1 4.5

: rm-4.5

: 5-7-2019 at 15h37

1 198

: O0xb2f51706

: Unknown (firmware_mode = 7)

clearlock -> Clear all lock bits (Attention: Close processes that hold lock bits

before you do this)

Driver Flags

The /proc/flx interface makes it possible to toggle certain parameters by issuing the following
command:

echo <action> > /proc/flx

By substituting <action> it is possible to do the following (only a selected list below):

* Enable/disable compatibility mode with RM3 with the parameter rm3' or 'rm4' respectively.

* Enable/disable automatic re-ordering of FELIX cards to a more intuitive order w.r.t device type
('swap' or 'noswap').

e Clear all device locks with 'clearlocks'

5.2.2. Installation of FELIX Software Suite

The FELIX software release is available pre-compiled as a tarball which can be installed anywhere
and then set up for use by running a command line script. Each user can download their own
version, or the release can be installed centrally and the location of the script shared with users.

To unpack the tarball, run the following command:
tar -xvzf <filename>

Once unpacked, a setup script must be run to enable access to all libraries and binary files. The
script can be run as follows from the release base directory:

source felix-04-01-00/x86_64-centos7-gcc8-opt/setup.sh

This script will need to be run with every new session, or added to the environment setup
procedure. Once complete you should have access to all FELIX software. In the next section we will
describe how to test your installation to verify full functionality.

5.2.3. Installation of FELIX rpm

An rpm of FELIX is available from the Release Distribution Site. The rpm needs to be normally
installed. v yum install felix-04.01.00-1.el7.cern.x86_64.rpm

No further setup is needed. FELIX commands will be available on the path and users can compile
and link against the FELIX libraries.

5.2.4. Installation of FELIX in CVMFS

Installation of the latest and nightly versions of the FELIX software are available in cvmfs under:
/cvmfs/atlas-online-nightlies.cern.ch/felix/releases
/cvmfs/atlas-online-nightlies.cern.ch/felix/nightlies

to set up run:

source felix-04-01-00/x86_64-centos7-gcc8-opt/setup.sh

Chapter 6. Basic Tools

The FELIX software suite comprises both high and low level tools. At the highest level, the felixcore
or felixstar application is responsible for communication and bulk dataflow in a full slice system.
At a lower level, the suite provides a number of tools, both command line and GUI based, to
facilitate system configuration and testing. This chapter will describe these low level tools such that
users will be able to effectively communicate with, configure and test their system.

If you are looking to set up a full system slice with data output to a network please consult Section
7, which describes the felixcore application and netio library. This section assumes that you have
set up your FELIX software environment as described in Section 5. None of the tools in this section
should require superuser privileges to run. All tools presented below work in both GBT and FULL
mode, and for VC-709 and BNL-711 or BNL-712 cards, unless otherwise stated. Where special
parameters are needed to distinguish modes this will be indicated.

A quick reference for all tools to be covered in this section is presented in Table 1.

the FELIX software suite contains a number of tools which are considered for

o developer use only. All tools which are rated for use by front-end users are listed
in this document. Use of any other software is not recommended unless asked to
do so by a FELIX developer.

Table 1. List of all recommended user tools. For more information on each
please click the tool name to visit the dedicated section of this chapter.

Low Level Tools

flx- View FELIX hardware and firmware information,
info LTC2991[1tc2991] or Minipod devices on a BNL-711 or BNL-
712.

flx- View and modify low-level firmware parameters by reading
confi and writing FELIX firmware registers.

flx- Initialise FELIX, as well set as low level GBT and clock/jitter
init cleaning parameters.

flx- Reset FELIX or specific component.
reset

fcap View FELIX GBT E-link configuration capabilities (an addition
to the information from fIx-info).

felix- Manually deallocate memory in CMEM buffer.
cme

m-

free

Dataflow Tools

fdag Receive data from a single FELIX device and save to files or
perform sanity checks.

Low Level Tools

fdag Receive data from multiple FELIX devices and save to files or
m perform sanity checks.

fuplo Upload data through FELIX to a front-end E-link.
ad

FELIX Configuration Tools

elink GUI for link and data generator configuration.
confi

g

felink Calculate E-link IDs given inputs with differing formats.

ferev Reverse the endianness of data passing through an E-link.
erse

fgpol Switch 0/1 polarity of all data coming or going through a
arity specific GBT link.

fecon Upload link and/or data generator configuration to FELIX
f from the command line.

femu Control the FELIX data generators.

fttce Control the FELIX TTC data generator.
mu

fttcbu View FELIX E-link TTC-BUSY status and settings, as well as
sy other BUSY-related settings.

feto Configure FELIX timeouts (global, TTC and link data, a.k.a
instant timeout).

fflash Command line tool for loading a firmware image in BNL-711
or BNL-712 from the card’s flash memory into the card’s
FPGA.

fflash Command line tool for programming and verifying firmware
prog 1images in BNL-711 or BNL-712 onboard flash memory.

General Debugging Tools

fchec Perform configurable sanity checks on data from a file from
k fdaq or dump selected data chunks or blocks to screen.

fedu Dump data blocks from a FELIX device (or selected E-link) to
mp screen.

Remote Communication and Configuration Tools

fice Read or write GBTX chip registers via the GBT-link IC
channel.

fgbtx Read or write GBTX registers via a GBT-SCA I12C channel.
conf

Tools for GBT-SCA access

Low Level Tools

fec Demo control and communication with a GBT-SCA chip
(GPIO, ADC, DAC and/or 12C).

fscaid Read and display a GBT-SCA chip ID.
fscaio Set and get GBT-SCA GPIO lines.

fscaa Read out GBT-SCA ADC input channels.
dc

fscad Setand get GBT-SCA DAC output channels.
ac

fscai2 Read and write to I2C devices connected to GBT-SCA I12C
C channels.

fscad Read out a 1-Wire 64-bit ID chip connected to a GBT-SCA GPIO
s24 pin.

fscajt Program a bit-file into a Xilinx FPGA connected to a GBT-SCA
ag JTAG port.

fxves Interfaces Vivado with a GBT-SCA chip’s JTAG port (and
erver connected Xilinx FPGA(s)).

6.1. E-link Configuration with elinkconfig

Before FELIX can be used to transfer data its input and output links must be configured. The link
configuration for a given FELIX card can be accessed and modified using the E-link configurator
application called elinkconfig. This is a GUI based tool to compile an E-link configuration or to
inspect and/or edit the E-link configuration read from a given card, and to write the configuration
and/or emulator data contents to a selected device (a BNL-712 card consists of 2 devices). The tool
supports both GBT and FULL mode.

the link configuration must be manually refreshed every time a FELIX FPGA is
o reprogrammed, including power-cycling of a host, or after having executed flx-
reset to reset the registers to their defaults.

To run the elinkconfig application issue the following command:
elinkconfig&

The main configuration panel similar to the one shown in Figure 14 will appear.

K% FELIX E-link Configurator @ agogna - O *
FLX-device: | 0 (712, GBT) - ‘ ’ Read Cfg] | TH_FanOut...| |FH_FanOut...| | Timeout... || Clock... | Stream IDs Advanced
File: | Open.. || Save.. ||fuser/nd8/projectsfelix/software/elinkconfig/fix-24ch-static-config.elc |
Link |E| (8 GBT () FULLmode | Replicate.. || Repl 2 All | Use link 'EMU' to configure Emulator E-links m|
TTC-to-Host (63b) Truncation (per link): HDLC

Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4 Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
| 2bit - [2-bit - || 4-bit [4bit ~|8bit ~| . o(3n | 2-bit - | 2-bit - | 2-bit - [2-bit - | 8-bit - | c(3p
v/ 007 v 00f |HDLC ~ | v/ 007 V| oof v 017 v 01f |HDLC ~+ |
|HDLC ~ || |8blob ~ | |HDLC ~ || |8blob ~ ||| 8blob ~ |[/|8blob ~ |
Epath 7 Epath 7 016 Ole v IC (32) Epath 7 Epath 7 Epath 7 Epath 7 vl 1C (32)
|8blob ~ ||| 8blob ~ |
v/ 006 V| 00e T Epath6 | Epath6 v/ 006 v/ 00e v/ 016 v/ 0le
HDLC ~ |[/|8blob ~ | HOLC ~ |[/|8blob ~ |[|8blob ~ |||8blob ~ |
Epath 6 Epath 6 v 025 Epath 6 Epath 6 Epath 6 Epathe | ¥ 025
|8blob ~ | |8blob ~ |
v/ 005 v/ ood Epath 5 v/ 005 V| ood v/ 015 v/ o1d Epath 5
HDLC ~ ||/|8blob ~ | HDLC ~ ||/|8blob ~ ||/|8blob ~ ||/ 8blob ~ |
Epath 5 Epath 5 014 01c Epath 5 Epath 5 Epath 5 Epath 5
|sblob ~ |||eblob ~ |
v/ 004 v/ 00c T Epatha | Epatha v/ 004 v/ 00c v/ 014 v/ 01c
HDLC ~ ||/|8blOb ~ | HDLC ~ ||/|8blob ~ ||/|8blob ~ ||/ 8blob ~ |
Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4
v/ 003 v/ 00b v/ 003 v/ 00b v/ 013 v/ 01b
HDLC ~ |[/|8blob ~ | |HDLC ~ || |8blob ~ ||| 8blob ~ |[/|8blob ~ |
Epath 3 Epath 3 012 Ola Epath 3 Epath 3 Epath 3 Epath 3
8blob ~ || |8blob ~
v/ 002 v| 00a |7Epath2 | |7Epath2 | |&| v/ 002 v/ 00a v/ 012 v/ o1a |&l
HDLC ~ ||[sblob ~ |_Egrowl | | fupic - || [sbrob ~ || [eb10b ~ || /@bl | | Egroupl |
Epath 2 Epath 2 vi021 | Egroup2 | Epath 2 Epath 2 Epath 2 Epathz | ¥ 021 | Egroup2 |
|8blob ~ | | Egroup3 | |8blob ~ | | Egroup3 |
v/ 001 v/ 009 = v/ 001 v/ 009 v/ 011 v/ 019 =
—||—— i | Egroup 4 | E=ind | Egroup 4 |
HDLC ~ |[/|8blob ~ | ——t |HDLC ~ || |8blob ~ ||| 8blob ~ |[/|8blob ~ | ——
Epath 1 Epath 1 o1o0 018 [Replicate.. | Epath 1 Epath 1 Epath 1 Epath 1 [Replicate.. |
8blob ~ || |8blob ~ ——
v/ 000 v| 008 |7Epathu | |7Epathu | | Repl2All || pg0 v 008 v/ 010 v/ 018 | Repl2all |
[HDLE ~ ||/[8blob ~ | | Disable | | (ppic || [sbr0b ~||[eb10b + || [8blob v | | Disable |
Epath 0 Epath 0 | Enable | Epath 0 Epath 0 Epath 0 Epath 0 | Enable |

ToHost Link 0 FromHost Link 0

FELI x v4.1.0 9-JUN-2020 (tag: test-00-00-02-2-g0aefcba-dirty) | quit |

Figure 14. Main panel - elinkconfig

The elinkconfig interface is split into three main areas. At the top there are two control bars to set
FELIX card parameters, open/save configuration files as well as link selectors. The left main panel
displays the from front-end to FELIX/host configuration for the selected link.

E% FELIX E-link Configurator @ turano - O *
FLX-device: |0 (712) ~ Read Cfg | |TH_FanOut...||FH_FanOut...| | Timeout... Clock... Stream IDs Advanced
File: Open... Save... Juser/n48/projects/felix/software/elinkconfig/flx-24ch-static-config.elc
Link |0 ~|® GBT FULLmode | Replicate.. Repl 2 All Use link 'EMU' to configure Emulator E-links Generate/Upload...
TTC2Host (63b)
o
Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4 Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
2-bit - || 2-bit ~ | 4-bit =~ | 4-bit =~ | 8-bit v/ EC (3f) 2-bit - || 2-bit ~ | 2-bit =~ | 2-bit =~ | 8-bit v EC (3f)
v 007 v o0of HDLC - v 007 V| oof v 017 v 01f HDLC -
HDLC ~ 8blob ~ HDLC ~ 8bl0b ~ 8blob ~ 8b10b ~
Epath 7 Epath 7 016 Ole v IC (32) Epath 7 Epath 7 Epath 7 Epath 7 vl 1C (32)
|8blob ~ |||8blob ~ |
v 006 v 00e Epath & Epath 6 v 006 v 00e v 016 v 0le
HDLC ~ 8blob ~ HDLC ~ 8bl0b ~ 8blob ~ 8b10b ~
Epath 6 Epath 6 v 025 Epath 6 Epath 6 Epath 6 Epathe | ¥ 025
|8blob ~ | |8blob ~ |
v 005 v ood Epath 5 v 005 v/ ood v 015 v 01d Epath 5
HDLC =~ |[/|8blob = HDLC = || |sblob ~ ||/|8blob ~ ||/ 8blob =
Epath 5 Epath 5 014 01c Epath 5 Epath 5 Epath 5 Epath 5
|8blob ~ |||8blob ~ |
v 004 v 00c Epath 4 Epath 4 v 004 v 00c v 014 v 0lc
HDLC ~ 8blob ~ HDLC ~ 8bl0b ~ 8blob ~ 8b10b ~
Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4
v/ 003 v 00b v/ 003 v/ 00b v/ 013 v 01b
HDLC ~ |||8blob ~ HDLC ~ || |8blob ~ |||8blob ~ ||/|8blob ~
Epath 3 Epath 3 012 Ola Epath 3 Epath 3 Epath 3 Epath 3
|8b10b ~ || {8bl0b ~ | Egroup 0 Egroup 0
v 002 v 00a E v 002 v 00a v 012 v 0la
path 2 Epath 2 Egroup 1 Egroup 1
HDLC ~ ||[sblob ~ group HDLC ~ ||/[sblob ~ || 8blob ~ || [eblob ~ group
Epath 2 Epath 2 v 021 Egroup 2 Epath 2 Epath 2 Epath 2 Epath2 | ¥ 021 Egroup 2
|8b1ob ~ ||| Egroup 3 |8b1ob ~ ||| Egroup 3
v 001 v 009 T o v 001 v 009 v 011 v 019 S o
EFpaird Egroup 4 i Egroup 4
HDLC ~ 8blob ~ HDLC ~ 8bl0b ~ 8blob ~ 8b10b ~
Epath 1 Epath 1 o1o0 018 Replicate.. Epath 1 Epath 1 Epath 1 Epath 1 Replicate..
|8blob ~ |||8blob ~ |
St | | Siiini— Repl 2 all Repl 2 All
v/ 000 v/ 008 Epath 0 Epath 0 P v/ 000 v/ 008 v/ 010 v/ 018 P
HDLC ~ || |sblob ~ Disable HDLC ~ || |sblob ~ ||[sblob ~||[sbiob ~ Disable
Epath O Epath 0 Enable Epath O Epath 0 Epath 0 Epath O Enable
ToHost [FromHost
FELI X v4.0.1 4-APR-2020 (tag: felix-04-00-06-18-gd47a229-dirty) Quit

Figure 15. elinkconfig panel split. The uppermost panel (purple box) controls global settings and GBT
selection. The left main panel contains the E-link configuration for the from front-end to host direction, the
left main panel the from host to front-end direction

6.1.1. Global Panel

The elinkconfig global panel, shown in more detail in Figure 16 provides the top level interface for
the tool. From there it is possible to select from which FELIX device within your system you wish to
read out its (link) configuration, or read and set a number of global settings (using the top row of
buttons). Note that a BNL-712 card consists of 2 separate FELIX devices (as shown in the FELIX
device selection dropdown menu). From there one selects a link number for display and/or
configuration in the ToHost and FromHost panels (see below), as well as an associated link mode
(note that the link mode is a global card parameter; different links can not have different modes). It
is also possible to open previously saved configuration files and save new ones. Also there is a
button to open the dialog to write the selected or manually configured link configuration to any of
the FELIX devices in your system. There is also a checkbox to enable truncation of data chunks on
HDLC E-links, so that chunks with a size larger than can be expected from a GBT-SCA device (which
is 12 bytes maximum) from such links are suppressed (it happens sometimes that unconnected
links produce a lot of random data).

This panel also contains an advanced feature (if you tick 'Advanced’) allowing you to select the
maximum chunk size for a given E-link width - users are advised not to change these settings as they
may cause unexpected behaviour (NB: currently this feature is broken, and should not be used at all).

Select FELIX devi Read link Open FELIX Show/nde Show/hide
elect evice .
AnFLX-712 card confe L Opendatapath data timeout Open FELIX StreamlD afew advanced
has 2 devices tooperate on P gd . fan out control dialog clock source indication options
rom device . i
m (top row buttons) control dialog selector dialog bits (ToHost)
e N | \
Open/savelink FLX-device: |0 (712, GBT) ¥ |TH7FanOut... FH_FanOut... | Timeout... Clock... Stream IDs Advanced
conﬁg;ration ——PlFiIe: Open... Save... fuserin4gjprojects/felix/softwarefelinkconfig/flx-24ch-static-config.elc |
from/to file
Select input = Link [0 2||® GBT) FuLLmode | Replicate.. || Repl 2 All Use link 'EMU' to configure Emulator E-links GeneratefUpload...
link to d;:_Splay and TTC-to-Host (63b) | Truncation (per Iin}): HDLC |
configure
P B . . Enable/disable
Enable/disable Select link Repl!cate I!nk Replicate link chunk tr/uncation Open configuration
TTC-to-Host channel modeftype conflgurlatlond configuration on HDLC E-links upload/ data generator
(there’s one per device) across selecte acrossall setup dialog

other links other links

Figure 16. elinkconfig global panel.

From the global panel it is possible to access a number of sub-panels, as indicated in Figure 16.
These give access to more advanced global configuration options, details of which are presented
below.

The global panel also contains a tickbox to enable the socalled TTC-to-Host channel, a virtual E-link
carrying for each TTC Level-1 Accept a packet containing the corresponding TTC information.

Data Path Fan Out Selectors: TH FanOut and FH_FanOut

FELIX operates two separate data generators within its firmware, one attached directly to the data
path going to the host, and one attached to the path going towards the front-end. While the
generators are attached, they have mutually exclusive access to the data path with regular non-
emulated data in both directions. To avoid the two data types colliding only one type may access the
path at a time. The fan out selectors control this access by ensuring that only internally emulated
data or external data can be configured to pass at any one time. The FELIX applications and tools
configure these selectors automatically, but for the purposes of user testing it may be necessary to
set these values manually. The selectors are accessed via the TH_FanOut (to host) and FH_FanOut
(from host) buttons in the global panel. The resulting dialogs are presented in Figure 17.

K GET ToHost FanOut Select: Ezemulator x

GBT:| OE 1E 2E 3E 4E 5E 6E 7E BE 9E 10E || 11E Locked
None Cancel oK

E:*-i GET FromHuost FanOut Select: E=ernulator >
GBT:| 0O 1 2 3 4 5 6 7 8 9 10 11 Locked

Figure 17. Fan out control for to-host (top) and from-host (bottom) directions. The setting for each link is
displayed separately (in this case for a 12-link FLX-712 device, i.e. for a 24-link BNL-712 card). It is also
possible to (soft)lock the settings using the dedicated checkbox, meaning that certain tools will not touch
the settings when the lock is set.

In order to switch the selector value simply open the required dialog and click on the link number
you wish to toggle. A link displayed with its number alone is set to external data, if a link is
displayed with its number plus 'E' it is in emulator mode. It is possible to set/unset all values at once
using the All and None buttons provided.

0 Changes made here are immediately propagated to the selected FELIX device once
you select OK.

In some cases a user may wish to prevent other applications from automatically changing these
settings. For example, if a specific link is nominated for TTC information transfer it may be
convenient to fix this to external data for the duration of a test. In this case it is possible to lock the
values by selecting the locked check box. Applications will then refrain from changing these settings
until the card is reconfigured from this interface or the FPGA is reprogrammed. More information
on configuring TTC transfer to the front-end are available in Section 6.1.3 below.

Data Timeout Control Dialog

FELIX offers the facility to time out pending incoming data after a configurable window from
receipt of the first related packets. This is applicable for both regular and TTC data (in the to-host
direction). Should data time out then all available blocks are transferred to the host. The timeout
feature is enabled by default, but can me modified or disabled/re-enabled via the control dialog
accessible by selecting the Timeout button in the global panel. This will open the dialog shown in
Figure 18. From here it is possible to disable/enable both regular data and timeouts on the TTC-to-
Host channel using the check boxes, as well as modify the timeout window sizes. This should
typically only be done under the guidance of a FELIX developer for debugging purposes.

o Changes made here are immediately propagated to the selected FELIX device once
you select OK.

k% Datablocks Time-out Configuration@turano by

V| Time-out enabled: 65535 |5 x 25ns

v | TTC time-out enabled: 4095 |5 x 25ns

Coma]| o

Figure 18. elinkconfig data timeout control dialog.

EC and TTC2Host data are always subjected to an immediate time-out,
independent of the global time-out. In addition it is possible to enable a time-out

o per E-link independent of the global time-out setting, which may be important for
E-links carrying irregular and small data fragments such as those connected to
GBT-SCA devices.

Clock Source Selection Dialog

As mentioned in Section 3.5.1, FELIX supports two different firmware clock sources. It is possible to
switch between these sources from elinkconfig from the clock source selection dialog, accessible
by clicking the clock button in the global panel. The selection dialog is shown in Figure 19, and is a
simple two button toggle between TTC and local clock.

o Changes made here are immediately propagated to the selected FELIX device once
you select OK.

Please also consult Section 3.5.3 before making any clock changes, to ensure you correctly configure
your FELIX card’s jitter cleaner post-clock change to ensure continued stable operation.

E’-i Clock Configuration@turano ot

TIC '@ Local v
ox

Figure 19. elinkconfig clock source selection dialog.

6.1.2. ToHost Panel

The to-host panel provides access to the configuration of the currently selected link (GBT or FULL
mode) in the to-host direction. The type of panel to show can be selected in the global panel as
described in Figure 16. In the GBT case it is possible to configure the complete set of E-links
associated with this link, split up by E-group, as well as the EC (External Control) and IC (Internal
Control) channels. For each link it is also possible to select the type of encoding to be used, although
8b10b is recommended for all regular data links. If the Stream IDs tickbox in the global panel is
ticked the panel shows Stream ID indication tickboxes. It is a bit per E-link on the device that can be
set to indicate e.g. to data-acquisition software that the protocol on the corresponding E-link
features a Stream ID, which can then be taken into account by the software. A more detailed look at
this panel is presented in Figure 20.

Select E-link width per E-group

,I Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4 l
2-bit =~ | 2-bit ~ | 4-bit =~ | 4-bit ~ | 8-bit -~ v EC (3f)
v/ 007 v/ oof HDLC = Enable EC and
HDLC ~ |||8blob ~ ICchannels
Epath 7 Epath 7 016 Lo v ic (3a)
|sbiob ~ |||8blob ~ |
v/ 006 v/ 00e Epath 6 Epath 6
HDLC ~ |||8blob =
Epath 6 Epath & s
8blob ~ |
v 005 v| ood T Epaths Stream ID indication
HOLC = gb10b = Stream ID g per E-link
] Epath 5 Epath 5 L L Epath 7 (visible when
The hexadecimal number |sblob ~ ||/[8blob ~ | Epath 6 ‘Stream IDs’ ticked)
identifies the E-link =/ 004 V| 00c Epath 4 Epath 4 Epath 5
HDLC ~ |||8blob = Epath 4
Epath 4 Epath 4 Epath 3
v/ 003 v| 00b Epath 2
. . Epath 1
Link encgdmg —p HDLC ~ 8bl0ob ~ Epath 0
dropdown menu Epath3 | Epath3 012 ola R
Tarect | |sblob ~ ||/[8blob ~ | Egroup 0
v/ 002 v/ 00a S Epath 2 —— : forth
8b10b woLc - || [ablob - group Select E-group .ort e
T Epath 2 Epath 2 v/ 021 Egroup 2 =—— hutton operations
|8biob ~ ||| Egroup3 below
v/ 001 v/ 009 Rt ;
Epath 1 Egroup 4 (or Stream ID settings above)
HDLC ~ |||8blob = —
Epath 1 Epath 1 010 ois Replicate.. 1
|8blob ~ |||8blob ~ | Apply operation
v 000 v/ 008 Bepl2al :
Epath 0 Epath 0 — using
- - Disable
HDLC 8b10b selected E-group
Epath 0 Epath 0 Enable
ToHost

Figure 20. elinkconfig configuration panel for to-host direction (GBT mode). Various configuration options
and tools are indicated as they appear in the panel.

In FULL mode this panel provides only a few options, as this link mode does not contain logical E-
link subdivisions. This version of the panel is presented in Figure 21.

ToHost *Full Mode*

Figure 21. elinkconfig to-host panel (FULL mode).

6.1.3. FromHost Panel

The from-host panel makes it possible to configure the GBT links transporting data from FELIX
towards connected front-end electronics. This panel only exists in GBT mode form as FULL mode is
only a to-host protocol, and any FULL mode firmware will implement from-host links as GBT. A
more detailed look at this panel is presented in Figure 22. A key difference between this panel and
the to-host panel is that the link encoding available also includes several different TTC paths (in this
case, for a 2-bit E-link TTC-0 and TTC-6 are shown) which are for the propagation of TTC
information from FELIX to the front-end. Depending on the E-link width used TTC paths from 0 to 6
are made available. Using this encoding selector it is therefore possible to nominate specific E-links

to carry TTC data as needed.

Egroup O

Egroup 1

Egroup 2
Egroup 3
Egroup 4

| Replicate..

| Repl 2 all

Disable
Enable

Select E-link width per E-group

f Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4]
2-bit ~ || 2-bit ~ || 2-bit ~ || 2-bit ~ || 8-bit

v EC (3f)
v/ 007 v/ 00f v/ 017 V| 01f HDLC ~ Enable EC and
HDLC ~ || |8blob ~ ||/ 8blob ~ || |8blob ~ IC channels
Epath 7 Epath 7 Epath 7 Epath 7 viic (3e)
v/ 006 v/ 00e v/ 016 v/ 0le
HDLC ~ || |sblob ~ ||/ 8blob =~ || | 8blob ~
Epath 6 Epath 6 Epath 6 Epathe | ¥/ 025
8blob ~
v 005 v ood v 015 v 0l1d Epath 5
HDLC ~ 8blob ~ 8blob ~ 8blob ~
Epath 5 Epath 5 Epath 5 Epath 5
The hexadecimal number
. . . —_ v 004 v 00c v 014 v 01c
identifies the E-link
HDLC ~ 8blob ~ 8blob ~ 8blob ~
Epath 4 Epath 4 Epath 4 Epath 4
v 003 v/ 00b v 013 v 01b
Link encoding ———sHpLC ~ || [8bl0b ~ |||8blob ~ || 8blob ~
dropdown menu Epath 3 Epath 3 Epath 3 Epath 3 .
choices depend on E-link width
(P) |voo2 |wioea [wioaz |wvioza Egroup 0 I -
direct HDLC ~ || 8blob ~ ||[8blob ~ || 8blob = Egroup 1 Select E-group forthe
8b10b Epath 2 Epath 2 Epath 2 Epath 2 vio21 Egroup 2 button operations
8bl0b ~ Egroup 3 below
v/ 001 v/ 009 v/ 011 v/ 019
Epath 1 Egroup 4
HOLC ~ || 8blob ~ || 8blob ~ |||8blob ~ -
Epath 1 Epath 1 Epath 1 Epath 1 Replicate.. = .
aeol 2 Al Apply operation
(=] .
v/ 000 v/ 008 v/ 010 v/ 018 P using
HDLC ~ || eblob ~ || |8blob ~ ||/8blob ~ Disable selected E-group
Epath 0 Epath 0 Epath 0 Epath 0 Enable -
FromHost

Figure 22. elinkconfig configuration panel for from-host direction (GBT mode). Various configuration
options and tools are indicated as they appear in the panel.

6.1.4. Link and Data Generator Configuration Upload Dialog

The to-and-from host panels allow you to put together a complete configuration set for all links
handled by a given FELIX card. Once you have prepared your desired configuration, you can
upload it to a FELIX device in the current host machine by selecting the Generate/Upload button in
the upper panel on the right. This will open the upload dialog, as shown in Figure 23. The GBT
version is shown, but the FULL mode variant is essentially identical, beyond some disabled
developer features.

The E-link mapping for the FELIX data generators can be configured by selecting the EMU link in
elinkconfig (in previous versions this was done by selecting GBT link 0). If the option to save to a
file is used the emulator link configuration is now saved separately to the rest of the links. If an
older configuration file (which does not contain the separate emulator configuration data) is read
into the tool and uploaded, the configuration of link 0 is automatically used in its place.

Once the panel is prepared, select Upload from the middle box labeled E-link Configuration to write
your configuration to the device (Note: you have to upload to both devices of a BNL-712 card if you
want to configure the full card). If you also wish to configure the FELIX on-board data generators
for tests in emulation mode select the Upload button in the lower Emulator Data box.

If you are running in emulation mode and wish to change your E-link
o configuration you must remember to upload to the emulator every time you
upload a change.

In FULL mode the data generators will only produce FULL mode data in the to-host
o direction. In the to-front-end direction GBT data will be produced. In GBT mode
GBT data will be produced in both directions.

K% Generate/Upload Config and Emulator Data X
Developer
Output
Select FELIX device — 5 (@) to FLx-device: |0 ~ | FLX712-GBT-12chan-1910221102-GIT:rm-4.8/46

for upload actions

E-link Configuration
Upload link

Upload | s— . .
configurationto

. Emulator Data (NB: based on link 'EMU' configuration) selected FELIX device
Select size (bytes)

of generated ——> Chunksize |16 |%| Data pattern | Incr = | idles

data chunks E-width dep random StreamID Upload |e=—
\ J

Upload firmware
data generator
configuration to

selected FELIX device

Close
|
Additional emulator data options / \
Select generated [Select number

h to show toolti
(hover mouse to show tooltips data pattern 0X55/0xAA of IDLE chars

(incrementing byte | OxFF between chunks
or fixed byte pattern) | gxoo

with more info about individual items)

Figure 23. elinkconfig upload panel.

Once your configuration is uploaded you can then proceed to use the FELIX system as normal, the
new settings will take effect immediately. To avoid unexpected behaviour please avoid
reconfiguring the links while the FELIX device in question is in active use in your system.

6.1.5. Guide to Valid E-link Configurations

The E-link configuration uploaded to a FELIX card is actually a set of instructions to configure a
component known as the Central Router. It is responsible for sending incoming data (in either
direction) to the correct remote end point, as defined by E-link number. For FULL mode there is no
such thing as an E-link, and so the Central Router merely propagates a wide stream of bits across
the link. In the GBT case, E-links are defined as separate logical links within a given physical GBT
link. E-links can have (in the current implementation) three different bit widths, which given the
link clock defines the maximum bandwidth they can sustain. The widths are 2, 4 and 8 bits, running
at 40, 80 and 160 MHz respectively. There is currently no support for 16 bit E-links. A GBT link can
therefore be considered as a logical aggregation of low bandwidth links into one high bandwidth
transfer. For full details please consult the official documentation [GBTx].

In Normal mode, a GBT link is 80 bits wide, and this puts an upper limit on the number of E-links. It
is therefore possible to have few wide 8 bit links, a larger number of narrower 2 or 4 bit links, or a
mixture of the two. Should a GBT be operated in Wide mode (not currently supported) then a
further 32 bits are available within the GBT link (i.e. 112 in total), allowing for more E-links. The
structure of a normal mode GBT frame is shown in Figure 24. It is up to the user to decide how

much of the GBT width to utilise as per their front-end needs. It is permitted to leave link

bandwidth unused by not assigned E-links to that part of the GBT frame.

GBT frame

(120 bits)
Header IC EC E-group 4 | E-group 3 | E-group 2 | E-group 1 | E-group O FEC
(4 bits) (2bits) | (2bits) | (16bits) | (16 bits) | (16bits) | (16 bits) | (16 bits) | (32 bits)

Figure 24. Bit structure of a GBT frame, showing E-groups, IC and EC links, as well as GBT header and
Forward Error Correction (FEC).

Within a given GBT link, logical links are subdivided for management purposes into 16 bit wide E-
groups. Each E-group logically contains a combination of E-links up to an aggregate of 16 bits of
width, looking at either extreme this means up to 8 of the narrowest 2 bit E-links at one end, or two
of the widest 8 bit E-links at the other. The E-group is the unit of connectivity around which the
elinkconfig interface is built, with the to and from-host panels designed around the E-group
granularity of one complete GBT link.

Looking within the E-group, there is one further layer of link identification to consider. Each group
supports up to 8 logical E-paths. These correspond to the logical connection end-points which the
Central Router supports. In the to-host panel in Figure 20 and the from-host panel in Figure 22 this
is reflected in the "Epath" labels shown in each of the E-link selection boxes. Depending on the
chosen E-link width in a an E-group certain E-paths are used and some not (for the 4-, 8- and 16-bit
widths). The E-path used for a particular E-link is reflected in the E-link IDs (an 11-bit significant
hexadecimal number) in the E-group, so an E-link ID may not be unique for different E-link widths
(for example, certain E-link IDs may refer to either a 2-bit or 4-bit wide E-link).

Within a given link map, each E-link can be configured to use different encoding formats as per
front-end requirements. This area is still subject to active development, and it is strongly
recommended that users work towards basing systems on 8b10b encoding. For FULL mode 8b10b is
also the default.

There is a known issue with GBTX chips whereby links disconnected from any
front-end source generate spurious data at random intervals. If using FELIX with a
GBTX it is strongly recommended that any links which are disconnected from the
front-end be deactivated in the FELIX device using elinkconfig. This will prevent
spurious data causing confusion in front-end testing.

A

Semi-Static Firmware E-link Configuration

In the 24-channel GBT mode build, the FELIX firmware does not support fully configurable E-links
due to the need to conserve FPGA resources. The set of configurable E-links in this case is described
below.

To Host From Host

EC link 2 bit HDLC 2 bit HDLC

E-Group 0 2 bit HDLC, 8 bit 8b/10b 2 bit HDLC

E-Group 1 2 bit HDLC, 2 bit 8b10b, 8 bit 2 bit HDLC, 2 bit 8b10b
8b/10b

E-Group 2 4 bit 8b/10b, 8 bit 8b/10b 2 bit 8b/10b

E-Group 3 4 hit 8b/10b, 8 bit 8b/10b -

E-Group 4 8 bit 8b/10b 8 bit 8b/10b

6.1.6. Guide to common configuration tasks

Working with E-link configurations stored in files

elinkconfig can read and store configuration sets in .elc files. In order to load a previously existing
configuration set into the tool simply select Open from the global panel and choose the file to be
loaded. The GUI will be automatically updated to reflect the new configuration. From here you can
modify the configuration (if needed) by e.g. using the to and from-host panels to enable/disable E-
links. Once your changes are complete you can upload the new configuration to the FELIX card of
your choice using the Generate/Upload button in the global panel. Make sure to upload both the link
and data generator configurations if you wish to use the latter. Finally, you can save your modified
configuration to a file by selecting Save from the global panel.

Modifying the existing E-link configuration on a FELIX card without a file

If you are working without .elc files and wish you modify the existing configuration on a FELIX
device you must first load it into the tool by selecting the device in question via the global panel and
then pressing the Read Cfg button. This will populate the GUI with the configuration currently
active on the device. From here you can modify the configuration as required and upload a new
version to the device (or devices) as advised above. You can also save your configuration to a file for
later reuse.

Note that after starting up the tool or after modifying the selected device number the Read Cfg
button shows the button text in bold face, to indicate the configuration has not been read from the
device yet and turns to non-bold as soon as it is read.

Configure the to-host Level-1 Accept info E-link (TTC E-link)

The FELIX firmware implements a dedicated 'virtual' E-link (virtual, because it is not an E-link in
the GBT/FELIX sense) for the purpose of forwarding TTC Level-1 Accept information to the host
system for transfer to subscribers on the network. Each FELIX endpoint (or device) provides one
such 'E-link’, which is activated by ticking the TTC-to-Host checkbox in the global (top) panel in
elinkconfig, as shown in Figure 16. The E-link ID on which the data will be transferred is shown
there as well. (The exact value of the E-link ID is dependent on the number of (GBT or other) links
supported by the firmware.)

Such E-links produce a 26-byte L1AInfo data packet containing information about each Level-1

Accept. The contents of the packet are presented in Table 1 of appendix. More details on this and
other FELIX data structures can be found in the appendix.

Configure the to-front end TTC E-links

Users may configure any number of to-front-end links for the purpose of transferring TTC
information to their electronics. The TTC data arriving at the FELIX card will be automatically
decoded, and subsets made available to users for relay to front-ends in a configurable manner. The
subsets which can be sent depend on the width of the E-link chosen for the transfer.

The current configuration sets are presented in Table 2, although this can evolve based on user
requirements. For example, 2-bit E-links can be configured in "TTC-0' or 'TTC-6' mode, For "TTC-0'
mode only the L1A and the full, non-decoded B-channel data stream can be sent. Alternatively, 4-bit
E-links can be configured to send L1Accepts, Bunch Counter and Event Counter Resets, and a choice
of either the non-decoded B-channel data stream or a user defined broadcast bit. Detector groups
should communicate to the FELIX group which bits in which locations they need. If their needs are
not met by an existing option, an option can be added.

Table 2. Currently defined TTC options. Brcst[7:2] are the TTC user defined broadcast

command bits. Brest[1] is ECR, Brest[0] is BCR. Bit 0 is the first bit transmitted out.

E-link Dhit7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
option

0: 2 bits B-chan L1A
1: 4 bits B-chan ECR BCR L1A
2: 4 bits Brest[2] ECR BCR L1A
3: 8 bits B-chan Brest[5] Brest[4] Brest[3] Brest[2] ECR BCR L1A
4: 8 bits L1A Brest[3] Brest[2] ECR BCR*1 L1A Brest[5] ECR

*2
5: 4 hits BCR BCR BCR BCR
6: 2 bits BCR BCR
7: 8 bits L1A Brest[3] Brest[2] ECR BCR*1 L1A Brest[5] ECR

*3 *2

TTC Option 4 is as requested by the New Small Wheel and FELIX performs custom functions for
several of the input TTC bits, such as stretching to multiple BC’s and copying input bits to more than
one output bit. (Needed for compatibility with a two-level trigger)

Notes for Option 7:

*1 TTC Broadcast bit 7 is used to request that FELIX send two consecutive BCR’s, which are used as
OCR (Orbit Count Reset Request).

*2 Brcest[2], used for TestPulse, is held active by FELIX for 16 BC’s.

*3 Brest[3], used for SoftReset, is chosen from the six "toggle" versions of the Brcst[7..2] in TTC-7.
Feature will be added in firmware version 4.10

The broadcast bits[7..2] do not behave as they do for the legacy TTCrx or TTCrq
ASICs. For FELIX, these bits persist only as long as their transmission from the TTC

A system is repeated. Whereas for the legacy ASICs, they persist until they are
transmitted again, whereupon they are inverted. It is intended to provide the
legacy behavior as a per-bit option.

By selecting the encoding box (as shown in Figure 25) on the to-host panel for any given link it
should be possible to see which TTC options are available for that link.

Egroup 1 Egroup 1 Egroup 1
2-bit -~ 4-bit -~ B-bit ~
v 04f
8blob -
Epath 7 04e
v 0de
8b10b
v 04d
T
re-2 8b10b
TTC-5
v 0dc
I TTC-3
|8b10b ~ |
Epath 4 L=
FEI4
TTC-7

Figure 25. Example drop-down encoding menu for a 2-bit, a 4-bit and an 8-bit E-link, from left to right, resp.
What the available options represent is shown in Table 2.

Configure GBT-SCA E-links to/from host

E-links connected to GBT-SCA ASIC devices are 2-bit wide HDLC-encoded links. Such E-links are
designed to carry slow control information to and from any desired front-end location. Users may
set any number of 2-bit E-links (in either direction) into this mode. Note that the "EC" (External
Control) E-link is not restricted to be an HDLC E-link but can be a 2-bit 8b/10b E-link.
Communication with a GBT-SCA ASIC requires both a to-host HDLC E-link and a from-host HDLC E-
link enabled and connected to the GBT-SCA ASIC. They are usually, but not required to be, in
corresponding positions in the E-groups. FELIX performs the HDLC encoding and decoding.

o An OPC-UA server and client for the GBT-SCA ASIC are provided to allow high level
communication with the GBT-SCA’s I/O channels by user software.

IC channel

The GBT IC channel is a 2-bit wide channel in the GBT protocol dedicated to control of the GBTX
chip at the remote end of the link. Provided the GBT link is up this channel is used for additional
configuration of GBTX registers. In a FELIX device both IC to-host and from-host 'E-links' must be
enabled for a user to gain access to his front-end GBTX devices.

6.2. Low Level Tools

The following section will cover some general tools which allow you to monitor the state of your
FELIX system, as well as make configuration changes and reset the system as necessary. All tools
provide more detailed descriptions of functionality through their help output, accessible by
running the tool with option -h.

6.2.1. flIx-info

The flx-info application is a command line tool which can print to the screen a range of monitoring
and configuration information for your FELIX card(s). By default you will be presented with some
system version and health status, as well as a basic link description. To access this default printout
run the following command:

flx-info

This will give output similar to that what is shown below, including general information such as the
firmware revision GIT tag and firmware mode 'GBT' or 'FULL'. To produce more verbose output pass
option -v or -vv to the tool.

> flx-info
Card type: FLX-712

General information

Card type : FLX-712

Reg Map version : 4.8

FW version date : 19/10/22 11:02

GIT tag : rm-4.8

GIT commit number : 46

GIT hash : 0x00000000dc11cebb
Active F/W partition: 3

Firmware mode : GBT

Output of 1spci:

19:00.0 Communication controller: CERN/ECP/EDU Device 0428

13:00.0 Communication controller: CERN/ECP/EDU Device 0427

b5:00.0 Communication controller: Xilinx Corporation FPGA Card XC7VX690T
b6:00.0 Communication controller: Xilinx Corporation Device 7039

Interrupts, descriptors & channels
Number of interrupts : 8
Number of descriptors : 2
Number of channels 2 12

Links and GBT settings

Number of channels 2 12
GBT Wrapper generated : YES
Optical transceivers : 4

Clock resources

MAIN clock source : LCLK fixed
Internal PLL Lock : YES
ADN2814 TTC Status : ON

Beyond this basic output, flx-info also makes it possible to read many FELIX configuration registers
in detail. The feature set that was previously implemented in the flx-monitor application has been
merged into flx-info. These features include monitoring the Minipods' status and
voltage/temperature monitoring through the LTC2991 [1tc2991] aboard BNL-711/712 cards (does not
apply to the VC-709).

For a complete list of available options run flx-info with option -h. This will produce the output
shown below:

Help text of flx-info:

Usage: flx-info [OPTIONS] [COMMAND] [CMD ARGUMENTS]
Displays information about a FLX device.

Options:

-c NUMBER Use card indicated by NUMBER. Default: 0.

-D level Set API debug output level.

0=disabled, 5, 10, 20 progressively more verbose output.

Default:@.

-h Display help.

-V Verbose mode.

-V Display the version number
Commands:

FPGA Display the status of the FPGA

LTC Display the status of the LT(C2991

POD Display the status of the active MiniPODs

-3 Display the status of all MiniPODs (not only the active ones)
TTC Display data from TTC related registers
-z Zero the counters

FREQ Display the RXUSRCLK frequency

LINK (or GBT) Display the channel alignment status.

ELINK Display the E-link alignment status.

ADN2814 Display the ADN2814 register 0x4.

CXP Display the temperature and voltage from CXP1 and CXP2

SFP Display the information from Small Form Factor Pluggable
transceivers

DDR3 Display the values from DDR3 RAM memory

SI15324 Display the SI5324 status

SI15345 Display the SI5345 status

LMK©3200 Display the LMK@3200 status

ICS8N4Q Display the ICS8N4Q status

EGROUP [chan] [RAW] Display the values from EGROUP registers:
If no channel is specified, display all available,
using hexadecimal notation if RAW is specified.
ALL Display all information.

6.2.2. fcap

The fcap tool provides some information additional to what is obtained with flx-config, in
particular the E-link configuration capabilities of FELIX GBT firmware. The firmware has a per-
Egroup and per-direction setting for E-link configuration. Here’s an example of the output of fcap:

> fcap

Firmware : FLX712-GBT-12chan-2006041630-GIT:rm-4.9/244
Trailer : 16-bit

Blocksize : 1024

(FromHost:YES DirectMode:NO Xoff:NO TTCemu:YES)

E-link confiqurability:

Egroup | ToHost | FromHost
0 8,HDLC HDLC
1 2,8,HDLC 2,HDLC
2 4,8 2
3 4,8 ===
4 8 8

Per E-group is shown what width and type of E-links can be configured, in both the to-host and
from-host directions. For example '8 here means only 8-bit 8b10b-encoded E-links are possible for
that group, '2,HDLC' means both 2-bit 8b10b-encoded or HDLC-encoded E-links can be configured
for the group, 'HDLC' means the E-group consists of 2-bit HDLC E-links only. Individual E-links can
always be disabled and enabled.

6.2.3. flx-config

The flx-config tool allows users to modify FELIX control and configuration registers from the
command line. This should normally only be done on advice from a member of the FELIX
development team. Other features are also available, but these should be considered for experts
only unless advised otherwise by the development team. The two primary features users will use
will be the 'list' and 'set' and 'get' features. List mode will dump the values of all known FELIX
register items to the screen, including the address of the register containing the item (a register
may contain multiple individual items), whether the item is readable and/or writable, the bits in the
register the item occupies, its name, its current value and a short description of the item. This will
be a large amount of output, but can be searched e.g by piping it through more or through grep with
a keyword to get the desired information. To run list mode execute the following command:

flx-config list
To change a given register bitfield value (or item) use the 'set’ feature, as follows:
flx-config set ITEMNAME=<val>

In this case ITEMNAME corresponds to the register bitfield to be changed and <val> to the new
value be stored. Once set you can use list mode to confirm the change, or read the item explicitly, as
follows:

flx-config get ITEMNAME

Note that instead of using 'set' and 'get’ for single item write and read operations, the same can also
be achieved as follows:

flx-config ITEMNAME <val>

flx-config ITEMNAME

If the given ITEMNAME does not correspond exactly to a known item, a list of items will be
displayed containing the given name as a substring. Item names may be given in lower and/or
upper case and with '_' characters replaced by '-'.

6.2.4. flx-init

This tool has the ability to reset the GBT wrapper and transceiver, and should be performed every
time the FPGA is reprogrammed (including in case of loss of power). The tool should also be run if
the GBT fibres are disconnected at any point before attempting to transfer data once again.

To run the basic initialisation issue the following command:
flx-init

If you wish to use more features (if instructed by a member of the development team), consult the
help dialog shown below.

Help text of flx-init:

Usage: flx-init [OPTIONS]
Initializes an FLX device.

General:

-d NUMBER DEPRECATED ---- Use device indicated by NUMBER. Default: 0.

-c NUMBER Use card indicated by NUMBER. Default: 0.

-h Display help.

-D level Configure debug output at API level.

0=disabled, 5, 10, 20 progressively more verbose output.

Default: 0.

-E Execute the command even if resources are locked

-V Display verbose output.

-V Display the version number

GBT calibration:
-3 ONE|CONTINUOUS Select alignment type. Default: ONE.

-t FEC|WideBus Select transmission mode. Default: FEC.
TTC calibration:
-G NUMBER Get and display the status of a SI53xx
Legal values are: 1 = SI5324, 2 = SI5345
-C Set the registers of the ICS 8N4Q@@1L
-T mode Set a clock to a given frequency

Legal values for mode are:
-T not in command line = automatic default configuration
-T 0,1,2,3,etc. special configuration (currently not

supported)
-I INSEL To be used in combination with -T.
The value given will be written into register
HK_CTRL_FMC_SI5345_INSEL
Legal values are:
FLX-709: 0-->FPGA (LA@1), 1-->FMC 0SC, 2-->FPGA (LA18)

6.2.5. flx-reset

The flx-reset application makes it possible to selectively reset components of the FELIX firmware,
or the complete board, as needed given the situation. This should only be done if advised by a
FELIX development team member. To see the list of available parameters please consult the help
output shown below:

Help text of flx-reset:

Usage: flx-reset [OPTIONS]
Tool to reset various resources on the card.

Commands:
Options:

DMA_RESET Resets the DMA part of the Wupper core.

REGISTERS_RESET Resets the registers to default values.

SOFT_RESET Global application soft reset.

LINK (or GTH) Reset the 1link RX (for FULL mode F/W only).

-q The individual quad (0..5) to be reset (default: all)
ADN2814 Reset the ADN2814.
ALL Do everything. (Note: use -c, not -d:
resets the card and the resources of all devices of that card)

Options:

-d NUMBER Use device indicated by NUMBER (applies to
DMA/SOFT/REGISTERS_RESET; default: 0).

-c¢ NUMBER Use card indicated by NUMBER (default: 0).

-D level Configure debug output at API level.

@=disabled, 5, 10, 20 progressively more verbose output (default:

0).

-E Execute the command even if resources are locked

-h Display help.

-V Display the version number
Note:

Use -c NUMBER with ADN2814 and LINK / GTH
Use -d NUMBER with DMA_RESET, SOFT_RESET and REGISTERS_RESET
If neither -c nor -d are given, card or device number @ is used as appropriate.

To reset a given component simply pass the name to flx-reset on the command line:

flx-reset <component_name>

6.2.6. felix-cmem-free

The felix-cmem-free tool makes it possible for a user to manually deallocate memory from the
CMEM buffer. In order to use the tool, the 'handle' of the allocated memory must first be found. To
do this issue the following command:

cat /proc/cmem_rcc

This will dump the current allocation status in a format similar to what is shown below.

CMEM RCC driver (FELIX release 4.5.0)

The driver was loaded with these parameters:
gfpbpa_size = 7500

gfpbpa_quantum = 4
gfpbpa_zone =0
numa_zones =

alloc_pages and alloc_pages_node
PID | Handle | Phys. address | Size | Locked | Order | Type |
Name

GFPBPA (NUMA = @, size = 7500 MB, base = 0x0000000295c00000)

PID | Handle | Phys. address | Size | Locked | Type | Name
27549 | 0 | 0x0000000295c00000 | 0x0000000040000000 | no | 4 |
F1xReceiver@

The command 'echo <action> > /proc/cmem_rcc', executed as root,
allows you to interact with the driver. Possible actions are:
debug -> enable debugging

nodebug -> disable debugging

elog -> Log errors to /var/log/messages

noelog -> Do not log errors to /var/log/messages

freelock -> release all locked segments

The 'handle' is shown in the second column in the 'GFPBGA' table, in the row according to the
process whose memory you wish to deallocate. Finally, pass the handle to felix-cmem-free as
follows:

felix-cmem-free <handle>

Future FELIX releases (software version 4.2 onwards) should incorporate more advanced
automatic deallocation in the case of abnormal program termination, but in the short term felix-
cmem-free should provide a manual workaround.

6.3. Dataflow from/to Front-end via FELIX to/from
FELIX host PC

6.3.1. fdaq(m)

The fdaq tool is the primary tool for testing the FELIX data acquisition path (for a data stream from
a single FELIX device; fdagm is a version of the same tool to support multiple data streams, although
the same could be achieved by running multiple instances of fdaq at the same time). The tool can
run in multiple modes, from waiting for input for FELIX from a front-end source to running with
one of the two internal data generators on the card activated, mostly for test purposes. In both
modes fdaq will measure and report throughput for the duration of the test. Data can be dumped to
a file or discarded upon receipt. If running in discard mode fdaq will check the integrity of the data
blocks and chunks it receives (e.g. block headers and chunk sizes). If an error is found the test will,

by default, stop and fdaq will report on the first detected error. However, if option -D is used the
run will continue with a regular report printed on all errors received.

This section assumes that your E-links and data generators are configured
o properly as specified in Section 6.1. In this section we will cover various scenarios,
but a list of all options can be found in the help output, shown below.

In full mode it will likely only be possible to run fdaq or a couple of seconds as you

o will rapidly exceed the maximum rate at which you can write to disc, which will
then cause the application to abort to avoid buffer overflow. For reference, for a
typical SSD this limit is approximately 300MB/s.

Help text of fdagq:

fdaq version 21031200

Stream data from FLX-device to file(s). Whenever the set maximum file size

is exceeded a new file is created. Every second a status line

with data rates, data totals and memory buffer status is displayed.

(NB: if no filename is provided all data is consumed while checking the data blocks,
e. blockheader and trailers; chunk truncation and error counts are reported.)

Usage: fdaq [-h|V] [-D] [-d <devnr>] [-b <size>] [-e|E] [-f <size>]
[-i <dma>] [-I] [-r <runnr>] [-t <secs>] [-C] [-R] [-T] [-X] [-o]
[<filename-base>]

-h : Show this help text.

-V : Show version.

-C : Do *not* check for presence of data chunk CRC errors (when not writing
to file).

-D : Debug mode on, 1i.e. output some additional info;

continue when memory buffer overflows.
-d <devnr> : FLX-device to use (default: 0).
-b <size> : DMA (cmem_rcc) memory buffer size to use, in MB (default 1024, max
4096) .
-e|E : Enable FLX-device data generator, internal (e) or
external (E) (default: false).
-f <size> : Maximum file size, in MB (default 4096, max 8192).
-1 <dma> : FLX-device DMA controller to use (default: 0).

-1 : use interrupt to receive data (default: polling)
-0 : Display status output not in columns (as before).
-r <runnr> : Run number to use in file names (default: none).
-R : Flush and reset DMA and issue a 'soft reset'

at startup (default: no resets).
-t <secs> : Number of seconds to do acquisition (default: 1).
-T : Do NOT add datetime as part of file names.
-X : Stream data from individual e-links to separate files (default: false).
<filename- base> Name to be combined with datetime+runnumber+counter of files created
(unless option -T is given)

Running a DAQ Test with External Data Source

The most simple configuration for fdaq to run in is to listen for any data coming into FELIX over the
GBT/FULL mode link and measure the bandwidth as this arrives at the host. In this mode the data is
discarded. The only parameter a user must define is the time in seconds for which fdaq should
perform the test. The default time is 1 second. The syntax is as follows:

fdaq -t <secs>

For a three second test the output will resemb]e this:

$ fdaq -t 3
Consume FLX-device data while checking the data (blockheader and trailers),
counts errors including chunk truncation, halts when the memory buffer is near
overflowing.
Also counts chunk CRC errors.
Opened FLX-device @, firmw FLX712-MROD-48chan-2004041603-GIT:RM4.10/1 (cmem
buffersize=1024MB)
START using DMA #@ polling

Secs | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps

1 0.0 0.0 0 0 0 0
2 0.0 0.0 0 0 0 0
3 0.0 0.0 0 0 0 0

STOP

-> Data checked: Blocks @, Errors: header=0 trailer=0

Exiting..

If you would like to dump your data to a file for analysis simply specify a filename after the other
command line parameters:

fdaq -t <secs> testfile

This will run as above and produce a time-stamped .dat file in the directory you are running with a
name of the format 'testfile-<timestamp>.dat'. You can specify the maximum size for the file with
option -f specifying a size in megabytes (default 1024, max 4096). If you would like to split the input
from multiple E-links into different files use option -X. The E-link numbers will become part of the
filenames.

Running a DAQ Test with Internal Data Generation

A facility to use both data generators within the FELIX card for the purposes of testing is provided
by fdaq. The 'internal' generator is connected directly to the data output path of the card (i.e. after
input side of the GBT link interface). Data from this generator therefore passes through the full
FELIX firmware data path with the exception of the link layer itself. The 'external’ data generator is
connected to the output path before the GBT layer. This means it can be configured to send data out
of a GBT link. If some loopback fibres are connected it is therefore possible to send data out of one
GBT transceiver and into another on the same FELIX and therefore test more of the data path. To
access these options in fdaq one must use option -e for internal data generation and option -E for
external data generation. The output from fdaq will be the same as shown for the external source

tests. Here is an example:.

$ fdag -t 5 -e
Consume FLX-device data while checking the data (blockheader and trailers),
counts errors including chunk truncation, halts when the memory buffer is near
overflowing.
Also counts chunk CRC errors.
Opened FLX-device @, firmw FLX712-GBT-12chan-1910221102-GIT:rm-4.8/46 (cmem
buffersize=1024MB)
START (emulator) using DMA #0 polling

Secs | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps

1 1449.5 0.0 1449.5 0 2 1
2 1451.2 0.0 2900.8 0 1 2
3 1451.0 0.0 4351.8 0 3 4
4 1451.5 0.0 5803.3 0 2 5
5 1451.4 0.0 7254.7 0 1 6

STOP

-> Data checked: Blocks 7072497, Errors: header=0 trailer=0

Exiting..

6.3.2. fupload

The FELIX software suite makes it possible to transfer data from the FELIX host PC via the FELIX
card to the front-end across any GBT E-link. This is done using the fupload tool. With this tool it is
possible to transfer data either from a user defined file, or with predefined data chunks of a
configurable size and data pattern on a specified E-link across a GBT connection. The full range of
features of the tool can be seen in the help text shown below.

o This tool works with FULL mode firmware versions, but uses a GBT link up to the
front-end.

Help text of fupload:

fupload version 21011500

Upload data (test data or from file) to the given FLX-device E-Tink.
The E-link number is provided as a (hex) number directly (-e option),
as a set of -G/g/p options, or as a set of -G/I/w options,

unless option -R is given ('raw' unformatted upload).

Checks whether the E-link is valid and configured on the selected FLX-device,
unless option -c is given.

In ASCII data files one line is one data packet (hexadecimal byte values separated by
spaces),
while lines starting with certain characters may be used to:

insert a comment line

+ insert a packet of the given length containing bytes of the given byte value

& insert a configurable delay in microseconds between two packets

> change the E-link number to upload to

Usage: fupload [-h|V] [-D] [-d <devnr>] [-b <size>] [-c] (-e <elink>
| (-G <gbt> (-g <group> -p <path>) | (-I <index> -w <width>)) [-i
<dma>]
[-s <bytes>] [-P <patt>] [-f <speed>] [-R] [-t <secs>] [-u] [-x <size>]
[-X] [<filename>]
- : Show this help text.
-V : Show version.
-b <size> : DMA (cmem_rcc) memory buffer size to use, in MB (default 128, max
4096) .

-B : Contents of <filename> is read as binary data (default: ASCII).
= : Do not check whether E-link is configured on FLX-device.

-d <devnr> : FLX-device to use (default: 0).

-D : Debug mode on, 1i.e. display blocks being uploaded.

-f <speed> : Speed up default upload rate of about 8MB/s by factor <speed> (default:
1)

-i <dma> : FLX-device DMA controller to use (default: auto).

-P <patt> : Test data pattern: @=incr, 1=0x55/0xAA, 2=0xFF, 3=incr-per-chunk
(default: 0).

-r <repeat>: Test data repeat count: upload <repeat>*<bytes> bytes of data (default:
30).

-R : Upload data unformatted, not as CR from-host data packets with header.

-s <bytes> : Number of bytes per chunk to upload (default: 32).

-t <secs> : Number of seconds for DMA time-out or wait until DMA done when @
(default: 0).

-u : Do not perform the actual upload operation.
-x <size> : Size of single-shot DMA transfers, in KByte (default: 1).
-X : Use continuous-mode DMA for upload (default: single-shot).

Options to define the E-link to use:
-e <elink> : E-link number (hex) or use -G/g/p or -G/I/w options.
-E <elink> : an optional 2nd E-link number to upload to
(alternating with the first given E-link number).
-G <gbt> : GBT-link number.
-g <group> : Group number.
-p <path> : E-path number.
-I <index> : Index of first bit of E-link in GBT frame.
-w <width> : E-link width in bits (2, 4, 8 or 16).

<filename> : Name of file with data to upload (ASCII or binary),
or test pattern data if no name is given.

6.4. FELIX Configuration Tools

6.4.1. felink

The felink tool is a link descriptor interpreter which allows you to work out the E-link ID for a given
link given GBT/E-group/E-path (or vice versa). This is intended to be used in conjunction with e.g.

fupload to allow users to work out which link ID they should target with their data. Some examples
of possible uses will be given below, but you can find all possible options in the help text below:

Help text of felink:

felink version 19101400

Convert a given E-link number into GBT, egroup and epath numbers

as well as GBT and bit-index and width, or the other way around.

The E-1ink number is provided as a (hex) number directly (-e option),
as a set of -G/g/p options, or as a set of -G/I/w options.

Optionally checks if this E-link is valid and configured on a given FLX-device (option
-d),

in either to- or from-host direction.

Use option -1 to display a list of valid E-link numbers,

optionally in combination with -G or -g options to restrict the list
to a particular GBT-link and/or egroup.

(Note that E-link numbers are also indicated in the elinkconfig GUI).

Usage: felink [-h|V] [-d <devnr>] (-e <elink>
| (-G <gbt> (-g <group> -p <path>) | (-I <index> -w <width>))

-h : Show this help text.

-V : Show version.

-d <devnr> : FLX-device to use (default: 0).

-e <elink> : E-link number (hex) or use -G/g/p or -G/I/w options.

-G <gbt> : GBT-link number.

-g <group> : Group number.

-1 : Show a list of valid E-link numbers (use options -G, -g, -p to restrict
the 1ist).

-p <path> : E-path number.

-I <index> : Index of first bit of e-link in GBT frame.

-w <width> : E-link width in bits (2, 4, 8 or 16).

A list of all valid E-links and coordinates can be seen with list mode, available with the following

syntax:

felink -1

Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

Consider the example where a user wishes to know the E-link ID for a link connected to GBT link 2,
within E-group 3 and E-path 4. This can be done as follows:

felink -G <GBT ID> -g <egroup ID> -p <epath ID>

Filling these in gives results as shown below, from which we can see that the E-link ID is 0x9C. The
results also show alternative coordinates for the E-link in terms of GBT bit address and width.

$ felink -G 2 -g 3 -p 4
E-link @9C = GBT #2 group #3 path #4, bit#56 width=2|4

It is also possible to search for link ID using the GBT ID, bit address of the start of the E-link in the
GBT frame and E-link width. The syntax is as follows, noting that the index must correspond to a
valid E-link start point.

felink -G <GBT ID> -I <bit address> -w <E-link width>

If a user then wants to search for GBT 1, bit 4 and width 2 the results will be as shown below. This
identifies the E-link in question as 0x42.

$ felink -G 1 -1 4 -w 2
E-link 042 = GBT #1 group #0 path #2, bit#4 width=2|4

These calculations can also be done in reverse, to yield the coordinates of a given known E-link ID.
For this use the following syntax:

felink -e <E-1ink ID in hex>

If as user then wants to know the coordinates of e.g. E-link 0x55 the tool can be used to give the
results as shown below. From this it can be seen that the GBT ID is 1, the E-group ID 2 and the E-
path ID 5. An estimate for the bit address and width is also displayed.

$ felink -e 55
E-link 055 = GBT #1 group #2 path #5, bit#42 width=2 OR bit#40 width=8

6.4.2. fereverse

The fereverse tool makes it possible to swap the bit ordering of data transferred through a
designated E-link (or set of links: all in one Egroup, or all in a GBT link), including for EC and IC
links separately. For more details consult the help text below:

Help text of fereverse:

fereverse version 21011300

Enable, disable or display the bit-order reversal feature for e-links,
a setting per e-path (e-link).

Without keyword '(re)set' the current setting is displayed.

Usage: fereverse [-h|V] [-d <devnr>] [-e <elink>]
[-G <gbt> [-g <group>] [-p <path>]] [-E] [-I] [-f] [-t] [set|reset]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <gbt> : GBT-link number (default: all links).
-g <group> : Group number (default: all groups).
-p <path> : E-path number (default: all paths).

-E : Display or enable/disable the EC channel 'bit swap'.
-1 : Display or enable/disable the IC channel 'bit swap'.
(for options -E/-I use option -G, not -e; options -g/-p are ignored)
-f : Configure FromHost (FH) only.

-t : Configure ToHost (TH) only.
set : Enable e-link bit-reversal.
reset : Disable e-link bit-reversal.

In order to use the tool to toggle the bits for a given E-link use the following syntax:
fereverse -d <FELIX ID> -G <GBT ID> -g <E-group ID> -p 1 <set/reset>)

In this case the set option indicates the bits should be switched and reset indicates deactivation of
the switch. It is also possible to pass the E-link ID directly using option -e. If neither set or reset are
specified the tool will simply report back the current status. Examples of both cases are shown
below.

$ fereverse -d @ -6 1 -g 1 -p 1 set
GBT 1 egroup 1 epath 1 TH: ENABLED
GBT 1 egroup 1 epath 1 FH: ENABLED

$ fereverse -d 0 -e 49 reset
GBT 1 egroup 1 epath 1 TH: disabled
GBT 1 egroup 1 epath 1 FH: disabled

6.4.3. fgpolarity

The fgpolarity tool makes it possible for FELIX to adapt to the bit polarity of data produced by front-
end systems and sent via a Versatile Link[VersatileLinkWebsite] transceiver. The transceiver, by
design, swaps the polarity of incoming and outgoing bits (i.e. 0 becomes 1 and vice-versa). Some
front-end systems may already account for the swap in their design, but in order to send and
receive packets to and from those who haven’t this tool configures FELIX to automatically swap the

bits for any designated GBT links (and therefore all E-links within). For more details consult the
help text below:

Help text of fgpolarity:

fgpolarity version 17060900
Configure or display the GBT transceivers RX and TX polarity.
Usage: fgpolarity [-h|V] [-d <devnr>] [-G <gbt>] [set|reset]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-G <gbt> : GBT-link number (default: all).

-r : Configure RX only.
-t : Configure TX only.
set : Set reverse polarity for given GBT transceiver(s).
reset : Set default polarity for given GBT transceiver(s).

(without keyword '(re)set' the current setting is displayed)

In order to use the tool to toggle the polarity of a particular GBT link use the following syntax:
fgpolarity -d <FELIX ID> -G <GBT ID> <set/reset>)

In this case the set option indicates the activation of a polarity switch and reset indicates
deactivation of the switch. It is also possible to modify the Tx and Rx directions separately using
options -t and -r accordingly. By default both will be changed. The expected output from the tool is
shown below.

$ fgpolarity -d 0 -G 1 set
GBT 1 RX polarity: 1
GBT 1 TX polarity: 1

$ fgpolarity -d @ -G 1 reset
GBT 1 RX polarity: 0
GBT 1 TX polarity: 0

6.4.4. feconf

The feconf tool is a command line tool providing some of the functionality of elinkconfig. With this
tool it is possible to upload a pre-defined E-link configuration file (.elc format) to a FELIX card.
Alongside the basic configuration, feconf also makes it possible to configure the FELIX firmware
data generators. For more information on the meaning of each parameter, consult Section Section
6.1 on elinkconfig. Feconf sets the so-called fan-out registers for front-end input (so not for
emulator input). For a full list of commands consult the help text below:

Help text of feconf:

feconf version 20121700
Upload an e-link configuration from file (generated by elinkconfig) to the given FLX-

device,

including generation and upload of emulator data contents.
Usage: feconf [-h|V] [-d <devnr>] [-s <chunksz>] [-w] [-R] [-S] [-I <idles>]

<filename>
-h
-V
-d <devnr>
-F
emulator).
-L
-n
-R
-S

: Show this help text.

: Show version.

: FLX-device to use (default: 0).

: Do not set FLX-card fan-out registers (default: set for DAQ, not

: 8b10b-words LSB first (GBT only; default: MSB first).

: Don't write the configuration, just read it in and display some info.
: Generate emulator data chunks with pseudo-random size.

: Generate emulator data with a StreamID (first byte).

-s <chunksz>: Emulator data chunksize to generate (default: 32).

-w
false).

-1 <idles>
8).
<filename>

6.4.5. femu

: Generate emulator data chunksize dependent on e-link width (default:
: The number of idles between generated emulator data chunks (default:

: Name of .elc or .jelc file with FLX-device E-link confiquration.

The femu tool gives users command line control over the FELIX firmware data generators, both in
the from and to host directions. The full range of features of the tool can be seen in the help text

below:

Help text of femu:

femu version 20042100
Show or configure 'FanOut-Select' registers and start/stop emulator.
Usage: femu [-h|V] [-d <devnr>] [-e|E|n] [-1]

-h
-V

-d <devnr> :

-e|E|n

: Show this help text.

: Show version.

FLX-device to use (default: 0).

: Enable FLX-device data emulator, internal (e) or external (E) or

disable emulator (n).

-f
external).

-1

-L

When no option is given the current status is displayed.
: When disabling emulator set TOHOST_FANOUT to emulator (default: to

: 'Unlock' FanOut-Select registers.
: 'Lock' FanOut-Select registers.

6.4.6. fttcemu

The FELIX TTC emulator can be programmed through the fttcemu tool available in the FELIX

software. The status of the FELIX TTC emulator is shown running the command ./fttcemu, which
displays the values of the various FELIX TTC emulator parameters. This is an example of what is
displayed:

$ fttcemu
Status:
TTC_EMU_SEL=0, TTC_EMU_ENA=0
TTC_EMU_BCR_PERIOD=3564
TTC_EMU_ECR_PERIOD=0
TTC_EMU_LTA_PERIOD=0

See for available options the help text below.

Help text of fttcemu:

fttcemu version 20062200
Show or configure TTC emulator registers and enable or disable the TTC emulator.

Usage: fttcemu [-h|V] [-c <devnr>] [-e|n] [-B <bc>] [-E <period>]

-h
-V
-C
e
-B

Note:
When

[-f <freg>] [-L <cnt>] [-t <us>] [-R]

: Show this help text.
: Show version.

<cardnr>:
n

<be>
<period>:
<freg>

<ent>

<us>

FLX-card selected (default: 0).

: Enable (-e) or disable (-n) the TTC emulator on the selected card.
: Set the BCR period, in units of BC (Bunch Count);

for <bc> equal to @ a single BCR is generated.
Set the ECR period, in ms;
for <period> equal to @ a single ECR is generated.

: Set the TTC emulator L1A fregency, in Hz.

(any individually generated L1As (option -L) done first)

: Generate <cnt> L1A triggers, using the interval set by -t (default: 0).

(any single BCR or ECR is generated first).

: The interval (in microseconds, default: 0)

between individually generated L1As (option -L).

: Reset the TTC emulator; also reset the TTC decoder.
options -B, -E, -f and -L also enable the TTC emulator, if necessary.
no option is given the current status (register contents) is displayed.

The TTC emulator can be enabled and disabled on the fly. TTC_EMU_SEL selects the TTC Source.
When set to '0', the TTC data comes from the decoder, when set to '1', the TTC data comes from the
TTC emulator. TTC_EMU_ENA starts the emulator. When set to '0' the emulator does not produce
any data. When set to '1' the emulator is running. The variables TTC_EMU_SEL and TTC_EMU_ENA
are both controlled with the command 'fttcemu -e' (setting both parameters to '1') and 'fttcemu -n'
(setting both parameters to '0").

The TTC emulator is able to generate periodic L1A, ECR and BCR signals. TTC_EMU_L1A_PERIOD is
the L1A period in units of LHC clock period (25 ns) set by the user as a frequency using option -e.
TTC_EMU_BCR_PERIOD is the BCR period in units of LHC clocks and by default has a value 3564
which is the default in the LHC experiments (representing a period of roughly 89.1 microsecond).

TTC_EMU_ECR_PERIOD is the ECR period in units LHC clocks, but note that the 'fttcemu’ tool sets the
ECR period in units of milliseconds (e.g. in the ATLAS experiment the ECR period is set to 5 seconds,
so that would be achieved by using option '-E 5000')

Set an L1A frequence of 1000 Hz an ECR period of 1 second:

fttcemu -f 1000 -E 1000

Generate a single ECR and a BCR:

fttcemu -E 0 -B 0

Generate a single ECR, followed by 10 L1A triggers at 10 Hz, then switch to 1000 Hz L1A:

fttcemu -E @ -L 10 -t 100000 -f 1000

6.4.7. fttcbusy

The fttcbusy tool gives an overview of various FELIX firmware BUSY settings, such as the E-link
TTC-BUSY status and enables, as well as the BUSY settings with respect to the main output FIFO and
DMA operation and the status and settings of the board’s BUSY output. Here’s an example of

fttcbusy output:

> fttcbusy -T
TTC-BUSY timing: Prescale = 15 Width = 15 Limit-time = 15

E-link TTC-BUSY status (latched BUSY requests and enables for BUSY output):

GBT
GBT

E

E

E
GBT
GBT
GBT
GBT
GBT
GBT
GBT
GBT
GBT
GBT

BUSY-by-DMA

BUSY-by-FIFO :

BUSY FullMode:

#00: TTC-BUSY=000000000000000 BUSY-ENA=000000000000000
#01: TTC-BUSY=00000000000A020 BUSY-ENA=000000000000000

= 045
= 04D
= Q4F
#02:
#03:
#04:
#05:
#06:
#07:
#08:
#09:
#10:
#11:

1-0-5 (not enabled)

= 1-1-5 (not enabled)

= 1-1-7 (not enabled)
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
: enabled=0

BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000

ToHost=0 (BAR@:0) (latched=0)

buffer free space: assert=200MiB ((800000) deassert=220MiB (DC00000)

enabled=0

thresh: deassert=3FF assert=4FF

status: low_crossed=0 high_crossed=0 (latched=0)
busy=000000 (latched=000000)

TTC Bch/TType: 1

BUSY output

: status=0, inhibit=0, master=0

Settings for the TTC-BUSY signal timing and BUSY-out signal can be configured. See for available

options the help text below.

Help text of fttcbusy:

fttcbusy version 20101300

Displays BUSY-related settings and optionally E-link TTC BUSY status and enables,
optionally clearing (latched) E-link BUSY bits.

With option -T the 'TTC BUSY accepted' register contents are displayed, as well as
the corresponding E-link numbers, while option -C clears these registers after being
displayed.
Also the tool may be used to configure the TTC-BUSY signal settings (limit, prescale,
width)
and BUSY output settings (master, inhibit, B-channel, DMA treshold).
Option -R resets the TTC decoder.

Usage: fttcbusy [-h|V] [-d <devnr>] [-G <gbt>] [-C] [-R] [-T]

[-1 <Llimit>] [-p <prescale>] [-w <width>]
[-m] [-1] [-b] [-B] [-X <thresh>] [-x <diff>]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device number (default: 0).
-G <gbt> : GBT-1ink number (default: all).
-C : Clear (latched) TTC-BUSY register bits.
-R : Reset TTC decoder.
-T : Display per-(E)1link TTC-BUSY info.
-1 <limit> : Set TTC BUSY limit time parameter (16-bit).
-p <prescale>: Set TTC BUSY prescale parameter (20-bit).
-w <width> : Set TTC BUSY width parameter (16-bit).
-m : Set (1) or clear (@) Master BUSY.
-1 : Set (1) or clear (@) BUSY Inhibit (= BUSY off).
-b : Enable(1) or disable(@) BUSY-by-DMA
(does not apply to BUSY-by-FIFO for the time being).
-B : Enable(1) or disable(@) TTC B-channel/TriggerType.
(NB: 1imits TTCtoHost rate to ca. 200KHz max)
-X <thresh> : Set BUSY-by-DMA assert threshold (in MiB).
-x <diff> : Set BUSY-by-DMA difference assert/deassert thresholds (in MiB).
6.4.8. feto

The feto tool gives users command line control over the FELIX block timeout at the level down to
individual E-links. If enabled FELIX will time out incoming data blocks taking longer than a
designated period to arrive and attach a timeout trailer to the block. The block will then be
transferred to the host as normal. The full range of features of the tool can be seen in the help text
below.

Help text of feto:

feto version 17121300

Enable, disable or display the instant time-out setting,

a setting per e-path (e-link), or the so-called global time-out
and associated time-out counter (number of clocks until time-out),
or the TTC time-out and associated counter.

Without keyword '(re)set' the current setting of the requested
(group of) time-outs is displayed.

Usage: feto [-h|V] [-d <devnr>] [-e <elink>] [-G <gbt> [-g <group>] [-p <path>]]
[-T] [set|reset] [<globentr>]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <gbt> : GBT-link number.
-g <group> : Group number (default: all groups).
-p <path> : E-path number (default: all paths).

-1 : Read or configure TTC time-out.
set : Enable time-out.
reset : Disable time-out.

<globcntr> : Global or TTC time-out counter value to set.

6.4.9. fflash

The fflash tool is designed specifically for loading a selected previously programmed firmware
image from FLASH memory aboard a BNL-711 or BNL-712 into the card’s FPGA, if the firmware
image loaded at power-up is not the required one, or because one wants to switch between versions
e.g. for test purposes. At power-up of the FELIX card the firmware image as selected by the setting
of onboard switches will become the operational firmware version. Note that after loading a
different firmware either a host machine reboot or PCIe hotplug operation is required (see Section
4.2.6 for details) to return the board to normal operation with the new firmware image operational.
A full listing of commands and additional help text is shown below.

Help text of fflash:

fflash version 21020800

Tool for loading a firmware image from one of the partitions
of the onboard flash memory of an FLX-712 into the card's FPGA,
issueing commands to the host system I2C bus to achieve this.

A subsequent hotplug procedure or machine reboot is required.

Usage: fflash [-h|V] [-q] -f <flashnr>
[[-L|I] [-U|P -d <devslot>] [-S] [-b <busnr>] [-r <chan>]
[s <saddr>] [-u <uaddr>] [-T <sec>]]

-h : Show this help text.
-V : Show version.
-q : Be quiet (only errors will be displayed).

-f <flashnr>: Flash memory segment partition [0..3] selection (no default).

-1 : Generate an INIT_B pulse on the FLX-card (to reset flash devices).
-L : Load firmware from the given flash partition into the card.

The following options are relevant in conjunction with the -L and/or -I option:
-b <busnr> : I2C-bus number (default=0).
-r <chan> : Riser card I2C-switch channel number (default=0).
NB: I2C-switch has hard-coded I2C address 0x70.
-s <addr> @ I2C-switch I2C-address (hex, default=0x77, expected range: 0x70-0x77).
NB: 0x70 already taken by the riser card I2C-switch!
-u <addr> : uC I2C-address (hex, default=0x67, expected range: 0x60-0x67).

-U : Use USB I2C-dongle instead of system SMBus
(requires scripts i2cset.py and i2cget.py installed in /opt/flx).
-P : Use 'ipmitool' to access system SMBus.
INB: use -d option to select 'device slot': 1 or 2.
-T <sec> : Set 'Prog-done' timeout [s] (default: 7)
-d <devslot>: Device slot (1 or 2), only in combination with -P.
-S : Preceed calls to i2cget/set or ipmitool with 'sudo'.

(default: 'sudo' not used; applies to options -L|I|P|U).
Examples:
Load flash memory image partition #2 into the card:
fflash -f 2 -L

Load flash memory image partition #2 into the card, using I2C-bus #1,
riser card I2C-switch channel #0, FLX-card I2C-switch address @x75 and
FLX-card microcontroller I2C-address 0x65:

fflash -f 2 -L -b 1 -r @ -s 75 -u 65

How to determine the I2C-switch and uC I2C addresses
(options -s and -u respectively) :
Note 1: there is an I2C-bus number (option -b) to select as well,
which is assumed to have the value '1' (following '-y') in the examples below.
Note 2: in the standard FELIX server there is an additional I2C-switch
on the socalled riser card; its channel is selected using option -r;
it means that the 2 FLX-cards in such a server may have identical
'-s' addresses, i.e. most likely their defaults

-s' and '-u
while the riser card setting is: 'top' position = -r @, 'bottom' = -r 1.
"sudo i2cdetect -y 1' should show you an address in the range 0x70-0x77,
let's say 0x77; this is then the address to use in option -s;
subsequently run 'sudo i2cset -y 1 @x77 1' to set the I2C-switch
causing an additional address in the range 0x60-0x67 to appear
in the output of 'sudo i2cdetect -y 1', so run that command again;
this is the address to use in option -u.
On the FLX-712 dipswitch J14 configures the '-s' and '-u' addresses:
switch 1-3 to set 3 LSBs of '-s', i.e. 0x70-0x77
switch 4-6 to set 3 LSBs of '-u', i.e. 0x60-0x67

6.4.10. fflashprog

The fflashprog tool is designed specifically for programming FLASH memory aboard a BNL-711 or

BNL-712 from an .mcs file containing a firmware image in Intel-HEX format. On the BNL-712 card
up to 4 firmware images may be stored. One of the images, selected by onboard switches, will be
loaded into the card at power-up and become the operational firmware; if another of the stored
images is required, the fflash tool should be used to accomplish that.

In addition the fflashprog tool is used to verify an image against an .mcs file or if necessary, to erase
a firmware image from memory.

A full listing of commands and additional help text can be seen in the help text below.

Help text of fflashprog:

fflashprog version 20040900

Tool for programming, verifying, erasing or dumping firmware images,

stored in a FLX-711/712 card's flash memory.

(to load a selected firmware image into the FLX-card's FPGA use fflash)

Usage: fflashprog [-h|V] [-q] [-c <cardnr>] -f <flashnr> [-D] [-E] [-F]
[<filename>] [prog]

-h : Show this help text.
-V : Show version.
-q : Be quiet (only errors will be displayed).

-¢ <cardnr> : FLX-card selected (default: 0).
-d <devnr> : FLX-device to use (default: @) OBSOLETE: use -c.

-D : Read and display contents of the selected flash partition or flash
file.
-E : Erase the selected flash partition.

-f <flashnr>: Flash memory segment partition [0..3] to dump, to erase,
to verify or to program (no default).
-F : Use the (slow) word-by-word instead of (fast) page programming method.

<filename> : Name of MCS file to dump, verify or program.
prog : Literal text string to initiate flash programming
(or else flash verification will take place).

Examples:

Read and dump to screen flash memory image partition #2:
fflashprog -f 2 -D

Erase flash memory partition #2:
fflashprog -f 2 -E

Verify flash memory partition #2 against mcs file <filename>:
fflashprog -f 2 <filename>

Program flash memory partition #2 with the contents of mcs file <filename>:
fflashprog -f 2 <filename> prog

Read flash ID only:
fflashprog -f 0

Extra:

Read and dump to screen the memory image in mcs file <filename>:
fflashprog -D <filename>

6.5. General Debugging Tools

6.5.1. fcheck

fcheck is a debugging tool which can analyse the .dat files produced by the fdaq tool and check for
data integrity issues. The tool will perform checks on a file to a specified degree of severity. As well
as running checks, the tool can also be used to dump selected data blocks to screen, either split into
data chunks or as raw data, to facilitate closer inspection of any issues found. To run the check,
specify the file name and check detail level as follows:

fcheck -B <severity> testfile.dat

A full list of features available with fcheck can be seen in the help text below.

Help text of fcheck:

fcheck version 20121600
Usage: fcheck [-h|V] [-A] [-B <id>] [-c|C|D] [-e <elink>] [-F <blocks>] [-S <blocks>]
[-t|T] [-w] [-0]|0] [-2]|4|8] <filename>

-h : Show this help text.

-V : Show version.

-A : Interpret chunks that could be GBT-SCA frames.

-B <1vl> : Do a check on (emulator) data blocks according to <lvl>,

and display a data summary (default: 2):

0: Check for proper block headers at 1k boundaries,
for each block 1 line of output is produced.

1: Same as @, but only when an error is found a line is output.

2: Full integrity checking of blocks, starting from
the block trailer going through all chunks.

3: Same as 2, including a check on expected emulator data payload,
which must constitute an incrementing byte.

4: Same as 3, but inconsistent maximum values of L1ID are not reported.

-C : Display data 'raw' datablocks (default: chunk data) (with option -F)
-C : Display chunk data bytes only, nothing else.
-D : Display only whole data chunks, i.e. the user's data frames.

-e <elink> : E-link number (hex) to filter for block check or block display.
-F <blocks>: Dump <blocks> 1K data blocks to display (overrules data check option
-B).
Chunk types: BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==",
TIMEOUT="]]", NULL="@@",
OUTOFBAND="##" and "TE" for chunk truncation/error.
-S <blocks>: Skip <blocks> of data blocks before starting check or display.

~t : Do NOT report chunk truncation/error/CRCerror.

-T : Do NOT report chunk CRCerror.

-W : Instead of displaying, write (binary) chunkdata to file (dataout.dat).
-0 : Do NOT display time-out chunkdata bytes (zeroes).

-0 : Do not display time-out chunks at all.

-2 : Display data as 2-byte words (little-endian).

-4 : Display data as 4-byte words (little-endian).

-8 : Display data as 8-byte words (little-endian).

<filename> : Name of file containing data to check or display.
Run full integrity check of all data blocks in file 'file.dat’, reporting data chunk errors as well data
block corruption, including block number, E-link number and block word index:
fcheck -B 2 file.dat
Display the data chunks from 2 data blocks starting from block number 1000 in file 'file.dat":
fcheck -S 1000 -F 2 file.dat
Display the raw data from 2 data blocks originating from E-link 8 starting from block number 1000:
fcheck -S 1000 -F 2 -e 8 -c file.dat

Display the data from 2 data blocks originating from E-link 8 as 4-byte items starting from block

number 1000, and not displaying the zeroes of time-out chunks, just their sizes:
fcheck -S 1000 -F 2 -e 8 -4 -0 file.dat

Display the data chunks from 2 data blocks and interpret the chunks that look like they are replies
from a GBT-SCA device, including control byte, transaction ID, channel number, length, error byte
and data:

fcheck -F 2 -A -0 file.dat

6.5.2. fedump

The fedump tool is designed to make it possible to dump data arriving at FELIX to the screen for
debugging purposes. Users of the tool can filter the data stream by E-link ID and FELIX card
number, as well as having the option of displaying the data in raw format. More advanced options
are available, but should only be used in consultation with the FELIX developers. For more details
consult the help text below.

Help text of fedump:

fedump version 20061700

Dump selected E-link chunk data (optionally block-by-block)

received from an FLX-device to screen.
Chunk types are delimited by:

BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==", TIMEOUT="]]", NULL="@@", OUTOFBAND="##"
Usage:

fedump [-h|V] [-A] [-c|D] [-d <devnr>] [-e <elink>] [-i <dma>] [-I] [-0|0] [-2]|4]|8]

- : Show this help text.

-V : Show version.

-A : Interpret chunks that could be GBT-SCA frames.

-C : Display data 'raw', block-by-block (default: chunk data).

-d <devnr> : FLX-device to use (default: 0).

-D : Display only whole data chunks, i.e. the user's data frames.

-e <elink> : E-link number (hex) to filter out for display (default: no filter).
-i <dma> : FLX-device DMA controller to use (default: 0).

-1 : Use interrupt to receive data (default: polling).
-0 : Do not display time-out chunkdata (zeroes).

-0 : Do not display time-out chunks at all.

-2 : Display data as 2-byte words (little-endian).

-4 : Display data as 4-byte words (little-endian).

-8 : Display data as 8-byte words (little-endian).

6.6. Remote Hardware Command and Configuration
Tools

6.6.1. fice

The fice tool is designed for communication on the IC channel of a GBT link, to read and write
registers on a GBTX chip present on a remote system connected to this link, in order to configure

the GBTX as required. Individual registers may be read or written or a file containing a range of
register settings can be read in by the tool and written as one message to the GBTX.

For a full list of commands consult the help text below.

Help text of fice:

fice version 18102400
Tool to read or write GBTX registers via the IC-channel of an FLX-device GBT link
(using the dedicated FLX-device virtual E-link):
read or write a single byte from or to the given GBTX register address
or write to multiple consecutive GBTX registers using the contents of a file.
(i.e. ASCII file: 1 (register) byte value (hex) per line,
e.g. the 'TXT' file generated by the GBTXProgrammer tool).
Provide a file name *or* use option -a with an optional additional byte value
to read resp. write a single GBTX register or, without option -a, to read all
registers.
Without option -a and file name all registers are read out and displayed
either in one IC read operation or one-by-one (option -0).
Option -t displays the register values in a format that could be used
as a 'TXT' file for this tool or the I2C-dongle GBTX programmer.
Usage:
fice [-h|V] [-d <devnr>] [-r] [-G <gbt>] [-I <i2c>] [-t] [-a <addr> [<byte>] |
<filename>]
-h : Show this help text.
-V : Show version.
-3 <addr> : GBTX register address (decimal or hex (@x.. or x..)) to read or write.
-d <devnr> : FLX-device to use (default: 0).
-G <gbt> : GBT-link number.
-I <i2¢> @ GBTX I2C address.

-0 : When reading all registers, do it one-by-one (default: one multi-reg

read op).

-r : Do NOT receive and process/display replies.

=R : Receive replies on any E-link.

-t : Display one register value per line in output (i.e. 'TXT'-format like).
<byte> : Byte value (hex) to write to GBTX register <addr> (option -a).
<filename> : Name of file with GBTX register data to write to consecutive registers.

=> Examples:

Read all registers of GBTX (I2C address 1) connected to FLX-device GBT link 3:
fice -G 3 -1 1
Read GBTX register 32 (0x20):
fice -G 3 -I 1 -a 32 (or: fice -G 1 -I 3 -a 0x20)
Write OxA5 to GBTX register 32 (0x20):
fice -G 3 -I 1 -a 32 A5
Write contents of GBTX-conf.txt to GBTX registers:
fice -G 3 -I 1 GBTX-conf.txt

Example of reading all registers of a GBTX device connected to the GBT link #3 IC-channel, with 12C
address 1 (each line starts with a register address, followed by 16 register byte values):

$ fice -G 3 -1 1
Opened FLX-device @, firmw FLX712-GBT-4chan-2007301614-GIT:rm-4.10/538
>>> GBTX#3 I2C-addr=1: read all registers
Reply: Parity OK
0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16: 00 00 00 00 00 00 00 00 00 02 00 28 00 15 15 15
32: 66 00 0d 42 00 Of 04 08 00 20 00 00 00 00 15 15
48: 15 00 07 00 38 00 00 00 00 00 00 00 00 00 00 15
64: dd 0d 00 00 00 00 00 00 00 00 00 00 00 00 ff ff
80: ff ff ff ff 00 00 00 15 dd 0d 00 00 00 00 00 00
96: 00 00 00 00 00 00 ff ff ff ff ff ff 00 00 00 15
112: dd 0d 00 00 00 00 00 00 00 00 00 00 00 00 ff ff
128: ff ff ff ff 00 00 00 15 dd 0d 00 00 00 00 00 00
144: 00 00 00 00 00 00 ff ff ff ff ff ff 00 00 00 15
160: dd 0d 00 00 00 00 00 00 00 00 00 00 00 00 ff ff
176: ff ff ff ff 00 00 00 00 00 70 00 00 00 00 00 00
192: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
208: 00 70 00 00 00 00 00 00 00 00 00 00 00 00 00 00
224: 00 00 00 00 00 00 00 00 00 70 00 00 00 00 00 00
240: 00 00 3f 3f 38 00 00 00 07 00 00 07 00 00 71 ff
256: ff 01 ff ff 01 ff ff 01 ff ff 01 ff ff 00 00 00
272: 00 20 00 00 00 00 00 00 00 15 00 00 00 00 00 00
288: 00 00 00 00 00 ff ff ff 40 40 40 2a 2a 2a 00 00
304: ff ff ff 40 40 40 23 23 2a 4e 4e 4e a3a 0a 07 00
320: ff ff ff ff ff 00 00 88 88 88 88 88 01 ff ff 01
336: ff ff 01 ff ff 01 ff ff 01 ff ff 01 ff ff 01 ff
352: ff 01 ff ff @1 ff ff 01 ff ff 00 00 00 aa 00 8e
368: 67 25 2e 80 80 80 a5 00 00 fd cd cd cd 00 00 00
384: 00 00 00 00 aa bb 9f ff ff ff ff ff ff ff 10 00
400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
416: 00 00 00 00 00 00 00 00 00 00 00 of 78 ff 00 61
432: 7d df f5 99
(chunks received: 1)

Write 0x34 to register 2 of that same GBTX device:

$ fice -G 3 -I1-a2 34
Opened FLX-device @, firmw FLX712-GBT-4chan-2007301614-GIT:rm-4.10/538
>>> GBTX#3 I2C-addr=1: write 0x34 to reg 0x2
Write 1 bytes: 34
Reply: Parity OK
2: 34
(chunks receijved: 1)

Read register 2 of the GBTX device:

$ fice -6 3 -I1-a?2
Opened FLX-device @, firmw FLX712-GBT-4chan-2007301614-GIT:rm-4.10/538
>>> GBTX#3 I2C-addr=1: read reg 0x2
Read 1 bytes
Reply: Parity OK
2: 34
(chunks receijved: 1)

6.6.2. fghtxconf

The fgbtxconf tool makes it possible to read and write GBTX registers accessible via the chip’s I2C
port, accessed through a GBT-SCA chip. The functionality of this tool is similar to fice. For a full
description please consult the help output below.

Help text of fgbtxconf:

fgbtxconf version 17111700
Tool to read or write GBTX registers via an I2C-channel of a GBT-SCA chip,
connected to any FLX-device GBT (2-bit HDLC) E-Tlink:
read or write a single byte from or to the given GBTX register address
or write to multiple consecutive GBTX registers using the contents of a file.
(i.e. ASCII file: 1 (register) byte value (hex) per line,
e.g. the 'TXT' file generated by the GBTXProgrammer tool).
Provide a file name *or* use option -a with an optional additional byte value
to read resp. write a single GBTX register or, without option -a, to read all
registers.
Usage:
fgbtxconf [-h|V] [-d <devnr>] [-e <elink>] [-G <gbt> [-g <group> -p <path>]] [-R] [-
rl [-W]
-C <ichan> -I <iaddr> -a <addr> [<byte>] | <filename>

-h : Show this help text.

-V : Show version.

-d <devnr> : FLX-device to use (default: 0).

-e <elink> : E-link number (hex) or use -G/g/p options.

-G <gbt> : GBT-link number.

-g <group> : Group number (default: 7=EC).

-p <path> : E-path number (default: 7=EC).

-R : Reset GBT-SCA.
-r : Do not receive and display the GBT-SCA replies.
-W : Read writable registers only (default: all).

-C <ichan> : GBT-SCA I2C channel number.
-1 <jaddr> : GBTX I2C address (hex).
-3 <addr> : GBTX register address (decimal or hex (@x.. or x..)) to read or write.

<byte> : Byte value (hex) to write to GBTX register <addr> (option -a).
<filename> : Name of file with GBTX register data to write to consecutive registers.
=> Examples:

Read all registers of GBTX (I2C address 1) connected to GBT-SCA I2C-channel 0,
GBT-SCA connected to FLX-device GBT link 3 EC-link:
fgbtxconf -G 3 -I 1 -C @ (or: fgbtxconf -e ff -I 1 -C 0)
Read GBTX register 32 (0x20):
fgbtxconf -G 3 -I 1 -C @ -a 32 (or: fgbtxconf -G 3 -I 1 -C @ -a 0x20)
Write OxA5 to GBTX register 32 (0x20):
fgbtxconf -G 3 -I 1 -C @ -a 32 A5
Write contents of GBTX-conf.txt to GBTX registers:
fgbtxconf -G 3 -I 1 -C @ GBTX-conf.txt

6.7. Tools for GBT-SCA device access

6.7.1. fec

The fec tool is designed for communication with a GBT-SCA chip present on a remote hardware
system connected to FELIX via a GBT link. The tool allows to send pre-programmed commands to
read out or write to a number of the hardware channels available on a GBT-SCA, such as GPIO, ADC

and DAC. The GBT-SCA can be connected to any 2-bit (HDLC-encoded) E-link of the GBT, besides the
EC channel. For a full list of commands consult the help text below.

Help text of fec:

fec version 21032300

Demo tool for control and read out of various devices on a GBT-SCA

through a GBT link's EC channel or any 2-bit wide, HDLC encoded E-link.

Receives (and displays) GBT-SCA replies, unless option -Z is given

(in that case use e.g. fedump or fdaq to receive).

Usage:

fec [-h|V] [-d <devnr>] [-i <dma>] [-I] [-N] [-G <gbt>] [-g <group>] [-p <path>]

[-t <ms>] [-x <par>] [-A] [-C] [-R] [-T] [-P <secs>] [-X] [-Y <seq>] [-Z] [<ops>]

-h : Show this help text.

-V : Show version.

-d <devnr> : FLX-device to use (default: 0).

-i <dma> : FLX-device DMA controller for receiving (default: 0).
-1 : USE interrupt to receive data (default: polling)

-N : Receiver resets DMA at start-up (default: no reset).

-G <gbt> : GBT-link number (default: 0).

-g <group> : Group number (default matches GBT EC 'group' = 7).

-p <path> : E-path number (default matches GBT EC 'path' = 7).

-r <repeat>: Number of GPIO/ADC/DAC operations to perform (default: 1).

-A : Use SCA-V1 ADC commands (default: SCA-V2 ADC).

-C : Send GBT-SCA connect (HDLC control).

-R : Send GBT-SCA reset (HDLC control).

-T : Send GBT-SCA test (HDLC control).

-t <ms> : Time between some of the ops, in ms (default: 100).

-P <secs> : Enable FromHost (circular) DMA then pause for <secs> seconds
(for DMA check/debug; default: no pause)

-X : Use continuous-mode DMA for upload (default: single-shot).
-x <par> : Parameter to use in operations, e.g. GPIO number, ADC or DAC channel
(default: 0).
-Y <seq> : Use <seq> as first HDLC 'receive sequence number'.
(to keep receiving side happy in consecutive calls)
-1 : Do NOT receive and display the GBT-SCA replies.
<ops> : String of chars indicating which operation(s) to perform:

0=GPI0-out, 1=6PI0-in, a=ADC, d=DAC, I=I2C (no-string=default: none).

Examples:
Blink an LED on a VLDB (here connected to GBT link #3, EC-channel)
on GBT-SCA GPIO #18 (the other LED is on GPIO #21) 20 times
with a rate of 5Hz (100ms ON, 100ms OFF):

fec -G 3 -t 100 -r 20 -x 18 o
Read GPIO inputs (GBT-SCA on GBT-link #3's EC-channel) 20 times
with a rate of 10Hz:

fec -G 3 -t 100 -r 20 i

Example: on the VLDB with GBT-SCA connected to the EC-channel of GBT link #3 blink one of the
LEDs (connected to GPIO #18; the other one is connected to GPIO #21) 25 times (-r 50) with an on
and off period of 100 ms (the last symbol is an 'oh’, which stands for 'GPIO output’):

fec -G 3 -r 50 -t 100 -x 18 o

6.7.2. fscaid
The fscaid tool reads out and displays a GBT-SCA chip’s ID register.

Help text of fscaid:

fscaid version 18111300
Tool to read a GBT-SCA's Chip ID.

Usage:

fscaid [-h|V] [-d <devnr>] [-e <elink>] [-G <gbt>] [-g <group>] [-p <path>]
[-11 [-C] [-R] [-Z]

: Show this help text.

-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <gbt> : GBT-link number (default: 0).

-g <group> : Group number (default matches GBT EC 'group' = 7).

-p <path> : E-path number (default matches GBT EC 'path' = 7).

-C : Send GBT-SCA connect (HDLC control).

-R : Send GBT-SCA reset (HDLC control).

-7 : Do not receive and display the GBT-SCA replies.

-1 : Read ID from a GBT-SCA Version 1 (default: V2).
6.7.3. fscaio

The fscaio tool is used to read and write a GBT-SCA’s GPIO lines, either individually or all 32 in one
operation. Also the direction register can be configured.

Help text of fscaio:

fscaio version

21011800

Tool to write and/or read the GBT-SCA GPIO bits and direction register.

Usage:
fscaio [-h|V]
[-1 <bi

-d <devnr> :
-e <elink>
-G <gbt>
-g <group>
-p <path>
-i <bit>

-0 <dir>

already is.
<value>

[-d <devnr>] [-e <elink>] [-G <gbt>] [-g <group>] [-p <path>]
t>] [-o0 <dir>] [-C] [-R] [-D] [-E] [-Z] [<value>]

: Show this help text.
: Show version.

FLX-device to use (default: 0).

: E-Tink number (hex) or use -G/g/p options.

: GBT-link number (default: 0).

: Group number (default matches GBT EC 'group'
: E-path number (default matches GBT EC 'path'
: Read or write GPIO bit number <bit> (default: all).

7).
7).

NB: if a single I/0 pin is written to, its direction bit
is set to output (independent of option -0).

: Set GPIO direction register to value <dir> (hex).

: Send GBT-SCA connect (HDLC control).

: Send GBT-SCA reset (HDLC control).

: Do not receive and display the GBT-SCA replies.

: Disable GBT-SCA GPIO channel after operation (default: leave enabled)
: Do *not* enable GBT-SCA GPIO channel at start of operation, assume it

: Value to write (@ or 1 for a single GPIO bit, or up to OxFFFFFFFF

otherwise, hexadecimal);

6.7.4. fscaadc

if no value is provided a read operation is performed.

The fscaadc tool reads out a GBT-SCA’s ADC input channels, displaying raw as well as converted (to
volts) values. In addition, ADC input channel current sources can be selectively enabled for the

read-out.

Example output for a single ADC input scan for a GBT-SCA connected to the EC channel of GBT link
#3 (here: the GBT-SCA on a VLDB):

$ fscaade -C -G 3

Opened FLX-device @, firmw FLX712-GBT-4chan-2008271931-GIT:rm-4.10/544
GBT-SCA connect

ADC enabled

GBT-SCA ADC readings:

0: 57B = 1403 = 0.343 V
1: 7A7 = 1959 = 0.478 V
2: 61C = 1564 = 0.382V
3: 6C7 = 1735 = 0.424 V
4: 64B = 1611 = 0.393 V
5. 76E = 1902 = 0.464 V
6: 819 = 2073 = 0.506 V
7: 836 = 2102 = 0.513 V
8: 791 = 1937 = 0.473 V
9: 7DB = 2011 = 0.491V
10: 71F = 1823 = 0.445V
11: 8DB = 2267 = 0.554V
12: 857 = 2135 = 0.521V
13: 7FF = 2047 = 0.500 V
14: 6BA = 1722 = 0.421V
15: 720 = 1824 = 0.445V
16: 60D = 1757 = 0.429 V
17: 5eC = 1516 = 0.370 V
18: 7E7 = 2023 = 0.494V
19: 892 = 2194 = 0.536 V
20: 7FF = 2047 = 0.500 V
21: 859 = 2137 = 0.522°V
22: 885 = 2229 = 0.544V
23: 6CB = 1739 = 0.425V
24: 8A2 = 2210 = 0.540 V
25: 699 = 1689 = 0.412V
26: CE1 = 3297 = 0.805V
27: 024 = 36 = 0.009 V
28: 77C = 1916 = 0.468 V
29: 000 = 0 = 0.000V
30: FFF = 4095 = 1.000 V
31: AOD = 2717 = 0.663 V (T=30.9C approx.)

Help text of fscaadc:

fscaadc version
Tool to read GB
Usage:

fscaade [-h|V]
<msk>] [-A]
[-1 «i

-d <devnr> :
-e <elink> :
-G <gbt>
-g <group> :
-p <path>

-c <mask>
-i <index> :

consecutively).
-n <kohm>

connected.
-r <cnt>
-t <us>

6.7.5. fscadac

The fscadac tool se

: E-path number (default matches GBT EC 'path'
: Use SCA-V1 ADC commands (default: SCA-V2 ADC).
: Enable current sources on the ADC inputs in bitmask <mask>

19031300
T-SCA ADC input channels and display the readings.

[-d <devnr>] [-e <elink>] [-G <gbt>] [-g <group>] [-p <path>] [-c

ndex>] [-n <kohm>] [-r <cnt>] [-t <us>] [-C] [-D] [-ET1 [-RI1 [-X1 [-Z]

: Show this help text.
: Show version.

FLX-device to use (default: 0).
E-1ink number (hex) or use -G/g/p options.

: GBT-1ink number (default: 0).

7).
7).

Group number (default matches GBT EC 'group'

(disabled again afterwards).
Conversion of ADC input <index> only (default: all 32 inputs

: NTC reference resistance value in KOhm;

for ADC inputs with current source enabled (option -c)
a temperature in Celcius is now calculated assuming they have such NTCs

: Number of times to convert ADC input or inputs (default: 1).

: Microseconds between ADC conversions (default: 200).

: Send GBT-SCA connect (HDLC control).

: Send GBT-SCA reset (HDLC control).

: Disable GBT-SCA ADC after operation (default: leave enabled)

: Do *not* enable GBT-SCA ADC at start of operation, assume it already

: Use continuous-mode DMA for upload (default: single-shot).
: Do not receive and display the GBT-SCA replies.

ts a GBT-SCA’s DAC output channels, one at a time, or all four at the same time. In

addition it provides an option to sweep through the DAC values for one or all channels within a
configurable time period.

Help text of fscadac:

fscadac version 18111300
Tool to set and/or read back GBT-SCA DAC outputs.
In addition it allows a sweep through the DAC range for one or all DAC outputs
within a configurable time period.
Usage:
fscadac [-h|V] [-d <devnr>] [-e <elink>] [-G <gbt>] [-g <group>] [-p <path>]
[-i <index>] [-s] [-t <ms>] [-C] [-R] [-D] [-E] [-Z]
: Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <gbt> : GBT-link number (default: 0).
-g <group> : Group number (default matches GBT EC 'group' = 7).
-p <path> : E-path number (default matches GBT EC 'path' = 7).
-1 <index> : DAC index (@=DAC_A,1=DAC_B,2=DAC_C,3=DAC_D) to use (default: all).

-s : Sweep DAC value for the given DAC output(s).
-t <ms> : Sweep time from DAC value @ to 255, in milliseconds,
when option -s given (default: 1000).
-C : Send GBT-SCA connect (HDLC control).
-R : Send GBT-SCA reset (HDLC control).
-7 : Do not receive and display the GBT-SCA replies.
-D : Disable GBT-SCA DAC after operation (default: leave enabled)
-E : Do *not* enable GBT-SCA DAC at start of operation, assume it already
is.
6.7.6. fscai2c

The fscai2c tool provides low-level access to I12C-devices connected to GBT-SCA 12C channels, with
control over register address size (1 or 2 bytes), register content size and 7-bit or 10-bit addressing.
See help text below for some more information.

Help text of fscai2c:

fscai2c version 21011500
Tool to read or write from an I2C device register
on any I2C port of a GBT-SCA chip connected to any FLX-device E-link

(the latter given by options -G/g/p or option -e)

Usage:

fscai2c [-h|V] [-d <devnr>] [-e <elink>] [-G <gbt>] [-g <group>] [-p <path>]
[-R <rate>] -C <ichan> -I <iaddr> [-t] [-a|A <addr>] [-r <nbytes>]
[-D] [-E] [<value-to-write>]

: Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <gbt> : GBT-link number (default: 0).
-g <group> : Group number (default matches GBT EC 'group'
-p <path> : E-path number (default matches GBT EC 'path’
-C <ichan> : GBT-SCA I2C channel number.
-I <jaddr> : I2C device address (decimal or 'Ox..' for hexadecimal).
-t : Use 10-bit I2C addressing mode.
-a|A <addr>: I2C register address ('a':1-byte, "A':2-byte).
(decimal or 'Ox..' for hexadecimal).

-r <bytes> : Register content number of bytes (default: 1).
-R <rate> : I2C transfer rate (1=100KHz, 2=200KHz, 4=400KHz, 10=1MHz, default: 4).

7).
7).

-D : Disable GBT-SCA I2C port after operation (default: leave enabled)
-E : Do *not* enable GBT-SCA I2C port at start of operation, assume it
already is.

<value-to-write>: hexadecimal value to write, the number of nibbles determining
how many bytes to write.

=> Examples:
Read 2-byte register 6 from a device with I2C address 5 on GBT-SCA I2C channel 4
connected to the EC channel of GBT #3:

fscai2ze -6 3 -C4 -I5-ab -r2
Write 0x1234 to 2-byte register 6 from I2C device address 5 on GBT-SCA I2C channel 4
connected to the EC channel of GBT #3:

fscai2e -G 3 -C4 -I 5 -3 6 1234

6.7.7. fscads24

The fscads24 tool reads out the unique 64-bit ID from a device from the 1-Wire DS2400-family,
connected to a GPIO pin of a GBT-SCA.

Example output, reading from a DS2411 connected to GPIO pin 3 of a GBT-SCA connected to the EC-
channel of FLX-card #0 GBT link #3, including sending an initial 'connect' command:

$ fscads24 -C -6 3 -i 3
Opened FLX-device @, firmw FLX712-GBT-4chan-2008271931-GIT:rm-4.10/544
GBT-SCA connect

ID:

01 63 41 a0 17 00 00 1a
Replies received: 288

Help text of fscads24:

fscads24 version 19112500

Tool to read out the 64-bit ID from a 1-Wire DS24xx chip.
Usage:
fscads24 [-h|V] [-d <devnr>] [-e <elink>] [-G <gbt>] [-g <group>] [-p <path>]

[-r <

cnt>] [-C] [-D] [-E] [-R] [-X] [-Z] -i <pin>

: Show this help text.

: Show version.

<devnr>
<elink> :
<gbt>
<group> :
<pin>
<path>
<cnt>

. FLX-device to use (default: 0).

E-1ink number (hex) or use -G/g/p options.

: GBT-1ink number (default: 0).

Group number (default matches GBT EC 'group' = 7).

: Use GPIO bit <pin> for the 1-Wire protocol ([0..31]).
: E-path number (default matches GBT EC 'path' = 7).
: Number of times to read the ID (default: 1).

: Send GBT-SCA connect (HDLC control).

: Send GBT-SCA reset (HDLC control).

: Disable GBT-SCA GPIO after operation (default: leave enabled)

: Do *not* enable GBT-GPIO at start of operation, assume it already is.
: Use continuous-mode DMA for upload (default: single-shot).

: Do not receive and display the GBT-SCA replies.

6.7.8. fscajtag

The fscajtag tool is used to program a 'bit' file into a Xilinx FPGA connected to the JTAG port of a
GBT-SCA.

Without a file name it reads and displays the connected FPGA’s ID and status register contents
(optionally the status bits are individually listed and named).

Help text of fscajtag:

fscajtag version 19061800
Tool to program a bit-file into a Xilinx 7-Series FPGA connected to the JTAG port
of a GBT-SCA, connected to any FLX-device GBT (2-bit HDLC) E-Tlink.
If a bit-file name is not provided the ID-code and Status register
of the FPGA are read out and displayed.
Usage:
fscajtag [-h|V] [-D] [-d <devnr>] [-e <elink>] [-G <gbt> [-g <group> -p <path>]]
[-c] [-R <rate>] [-r] [-s] [<filename>]

-h : Show this help text.

-V : Show version.

-C : Use continuous-mode FromHost DMA (default: single-shots).
-d <devnr> : FLX-device to use (default: 0).

-D : Enable debug mode: display all GBT-SCA replies.

-e <elink> : E-link number (hex) or use -G/g/p options.
-G <gbt> : GBT-link number.
-g <group> : Group number (default: 7=EC).
-p <path> : E-path number (default: 7=EC).
-R <rate> : JTAG clock rate, in MHz, 1,2,4,5,10 or 20 (default: 20).
-r : Do NOT receive and process/display GBT-SCA replies.
-5 : Display FPGA Configuration register bits.
-x <devs> : Number of devices preceeding the FPGA in the JTAG chain.
-X <ibits> : Total number of preceeding BYPASS instruction bits, or
(with option -z) the number of instruction bits per device.
-y <devs> : Number of devices trailing the FPGA in the JTAG chain.
-Y <ibits> : Total number of trailing BYPASS instruction bits, or
(with option -z) the number of instruction bits per device.
-z <instr> : The BYPASS instruction value for each of the preceeding
and trailing devices (when unequal to only '1'-bits).
<filename> : Name of .bit file containing the FPGA configuration.

6.7.9. fxvcserver

The fxvcserver tool connects to a selected FLX-card E-link connected to a GBT-SCA and listens for an
XVC protocol connection from a Vivado Hardware Manager in order to connect it to a Xilinx FPGA
connected to the JTAG port of the GBT-SCA device, allowing for the usual firmware programming
and debugging operations from within Vivado.

(Note that the same tool is available in the ATLAS DCS software for GBT-SCAs, interfacing to the E-
link via felixcore).

Help text of fxvcserver:

fxveserver v20082600

Relays Xilinx XVC protocol JTAG bit streams to and from the JTAG port of a GBT-SCA,
through its connection to a FELIX system.

Usage:

fxveserver [-h|V] [-v] [-d <devnr>] [[-e <elink>] | [-G <gbt> [-g <group> -p <path>]]
[-P <portnr>] [-R <rate>]

-h : Show this help text.
-V : Show version.
-V : Be verbose (for debugging only).

-d <devnr> : FLX-device to use (default: 0).

-e <elink> : E-link number (hex) or use -G/g/p options.

-G <gbt> : GBT-link number.

-g <group> : Group number (default: 7=EC).

-p <path> : E-path number (default: 7=EC).

-P <portnr>: IP port number to listen on (default: 2542).

-R <rate> : JTAG clock rate, in MHz, 1,2,4,5,10 or 20 (default: 10).
In Vivado's Hardware Manager in the TCL Console type "connect_hw_server"
(if necessary), followed by "open_hw_target -xvc_url <address>:<portnr>"
to connect to a Xilinx FPGA connected to the GBT-SCA JTAG port,
with <address> and <portnr> the IP address and port number
of the FELIX host running this fxvcserver.

Chapter 7. Felixcore Application and NetIO

7.1. Operational Principles

o It is generally recommended that you upgrade to use felix-star. It has better
memory management, better cpu usage and uses netio-next.

The FELIX core application (called felixcore) is the legacy version of the FELIX system’s central
process (now superceded by felix-star, but retained in the release during the transition to the new
architecture). The user interacts with the felixcore application via network endpoints to receive
data from E-links or to send data to E-links. Systems such as software RODs, DCS, calibration and
monitoring systems all connect with FELIX via felixcore.

Felixcore also supports monitoring of operational data via a web front-end and publishing of E-link
information via the FELIX bus system.

FLX Card Card Reader = Network
(PCle) Thread Worker Thread Interface
NetlO (PCle)
Block Queue
! a
FLX Card PCle Packet L+ NetlO Event Loop Thread
AP Decoder U |
) L Buffer
| PCle Packet Encoder NetlO Event Loop Thread

Statistics and Monitoring Thread

Figure 26. The architecture of the FELIX core application.

Figure 26 shows a diagram of the architecture of the FELIX core application. In the case of a system
with multiple FLX cards, one application can be run per card.

7.2. Configuration

The configuration parameters of the felixcore application are listed in Command line interface
options for the felixcore application. Each option can also be set in the configuration file. The
option key in that case is the long option without the leading dashes.. The parameters can be passed
to the application either on the command line or as part of a file.

Command line interface options for the felixcore application. Each option can also be set in the
configuration file. The option key in that case is the long option without the leading dashes.

felixcore - FELIX Core Application
Usage: felixcore [(--verbose | --quiet) --device N... options]

Run with card: 'felixcore'

Run with file: 'felixcore -f <file> --notoflx --nobusy'
Run with data generator: 'felixcore -g --notoflx --nobusy'

A1l Options:

General Options:

-t, --threads N
[default: 1]

-p, --port N
12350]

-r, --recv-port N
[default: 12340]

-P, --busy-port N
[default: 12330]

-w, --web-port N

-b, --buffer N
[default: 2000]

-g, --data-generator

-1, --logfile <file>

--ttc-generator N

default is off [default: -1]

--felix-id <id>

--data-interface <iface>
--monitoring-interface <iface>

[default: eth@]
--noweb

Netio Options:

-B, --netio-backend (posix|fi-verbs)

Commandline Options:
-h, --help
-V, --version
-v, --verbose
-q, --quiet
-c, --config <file>
file
--config-write <file>
-f, --file <file>

Card Options:
-d, --device N...
-m, --memory N
-M, --megabyte N

[default: 0]
--polling
--poll-time T
--dma D
--toflx-dma D
--elinks <elinkrange>

for instance

Run with the specified number of threads
Receive daq data starting from port [default:
Receive slow control data starting from port
Receive busy control signals on this port

Port for webserver [default: 8080]
Free Buffer size in kBlocks per thread

Use internal data generator
Write logs to the given filename
Use internal ttc generator and elink #,

Elink offset for this FelixCore [default: 0]
Interface to publish data [default: eth@]
Interface to publish monitoring information

Disable web server

Use the given NetIO backend [default: posix]

Display this help

Display version

Switch logging on, level = debug

Switch logging off, level = warning

Load configuration from the specified YAML

Store configuration in the specified YAML file
Use the given filename as input

Use only listed devices to look for cards
Allocate CMEM memory in Gbyte [default: 1]
Allocate CMEM memory in Mbyte, overrides -m

Use polling

Poll time in micro-seconds [default: 50000]
Use toHost dma channel [default: 0]

Use toFlx dma channel [default: 1]

E-1ink numbers/number range, comma separated

--streams <elinkrange>
--notoflx
--nobusy

Data Generator Options:
--fixed-chunks
--chunk-size-fixed N
--rate-control-bool
--chunk-size-min N
--chunk-size-max N
--e-link-min N
--e-link-max N
--e-link-id-min <id>
--e-link-id-max <id>
--period T
--max-overshoot T
--duration T

Debug Options:
--nostats
--display-stats
--nohistos
--pmstats

--nostats
--trace

7.3. Monitoring

7.3.1. FelixCore Native Monitoring

List of E-Links that carry streams
Do not start the To-FLX thread(s)
Do not start the Busy thread(s)

Use fixed chunk size

Fixed size of chunks [default: 1018]

Use rate control

Minimum size of chunks [default: 128]
Maximum size of chunks [default: 4096]
Minimum number of elinks [default: 50]
Maximum number of elinks [default: 150]
Minimum ID of elinks [default: 1]

Maximum ID of elinks (<2048) [default: 255]
Period in ms [default: 100]

Max overshoot in ms [default: 10]

Duration in s (@ = run forever) [default: 0]

Disable statistics

Print out statistics

Disable histograms

Enable poor man's statistics, implies

Enable tracing

The felixcore application provides monitoring and status information via a web front-end. By
default the web front-end is available on port 8080. To access the web front-end use a web browser
and point it to http./hostname:8080. Figure 27 shows a screenshot of the web app.

http://hostname:8080

Statistics Bus

1492515998

No data available in table

malformedSubchunks

malformedChunks

malformecBlocks

MBlocks
MChunks
MChunks
MBlocks / s
MChunks / s
Mbyte /s
Blocks

Blocks

Chunks
Chunks
Blocks

Chunks
Chunks

Chunks

Free Memory

134620

Block Rate [MBlocks/s]

134630

— Chunk Rate [MChunksJs]

Queue Size

b

2 3 —a

Throughput

Blocks

Elinks From-Host

1000
Elink #

Elinks To-Host
#16185332

1000
Elink#
Ports
#128

1000
Elink#

Queue Size

9472990

Figure 27. Screenshot of the integrated felixcore monitoring web app.

7.4. FelixCore Examples

When running with multiple threads, FELIX will publish data on multiple TCP/IP ports. The
examples are all started with 1 thread using the option -t 1. This ensures that all data is published
on a single TCP/IP port (default 12345), which facilitates debugging. To read out data from a
felixcore application that is started as in the examples below, use a client (for example netio_cat or
fatcat), and point it to port 12345 of the FELIX host. Of course, running with only one worker thread
limits performance and, depending on the workload, FELIX might not be able to keep up with the
load. In that scenario increase the number of worker threads accordingly. The tool felix-bus-list

Subchunks

can be used to obtain the mapping of E-links to TCP ports of a FELIX system.

A running felixcore instance can be stopped by pressing Ctri+\.

7.4.1. Tests without an FLX Card

Starting felixcore with input from a file (no card required):

$ felixcore -t 1 -f path/to/file.blocks --notoflx

7.4.2. Tests with an FLX Card

Starting felixcore with one processing thread and emulators enabled. Emulators are configured to

send data via PCle to the FELIX host software.

$ felixcore -t 1 --emu_to_host Oxff

E-link and emulator data configuration can be adjusted with the elinkconfig tool.

Starting felixcore with one processing thread and emulators enabled. Emulators are configured to

an

au

Threads
16105532

Thread #

Chunk Length
7841371, 0: 20424

* 2% El
byte

Subchunk Length
#:23963565

250 500
byte

send data via detector links to external receivers or via loopbacks back to the FLX card:
$ felixcore -t 1 --emu_from_host Oxff

E-link and emulator data configuration can be adjusted with the elinkconfig tool.

7.5. Connecting to a felixcore instance using NetIO
tools

The felixcore application uses the NetIO publish/subscribe system to distribute data. The tool
netio_cat can be used to analyze published data. For example,

$ netio_cat subscribe -H 192.168.15.2 -t 15 -t 42 -e raw

will let netio_cat subscribe to E-links 15 and 42 of the felixcore application running on the host
192.168.15.2 with the default port 12345. The encoding is set to raw, which will simply write a
hexdump of each received message. For other formatting and subscription options, see netio_cat
-h.

7.6. Connecting to a felixcore instance using FATCAT

FATCAT is an advanced analysis and test client for FELIX and the successor of multiple ad-hoc tools
like felix-client and felix-dcs. The application is currently experimental. For help options see

$ fatcat -h

In the future fatcat can be used to debug data streams coming from FELIX, send data to detectors
via FELIX, record data to disk, manage data subscriptions among multiple FELIX hosts, benchmark
FELIX systems and analyze recorded data.

7.7. Discovering E-links with the FELIX BUS system

Clients that want to receive data from or send data to specific E-links need to know by which FELIX
instances the desired E-links are managed. The FELIX BUS system is used for this purpose. FELIX
instances broadcast at regular intervals information about connected E-links. Clients can retrieve
this information and build internal lookup tables using the library libfelixbus.

The E-Link IDs published by felixcore are global E-link IDs, i.e. they uniquely identify E-links across
all FELIX hosts. This requires that the FELIX ID (command line option --felix_id) is set to a unique
number for each felixcore instance. The default FELIX ID 0 is fine to use for tests where only a
single FELIX is running.

The tool felix-buslist can be used to display the tables:

$ felix-buslist -t

Tables in FelixBus (ctrl\ to quit)

FelixTable::print(): table.size()=4

PeerId
1950EDDFD4821AF225D99EBCE9B22152
tep://10.193.16.62:12345
1950EDDFD4821AF225D99EBCE9B22152
tep://10.193.16.62:12348
1950EDDFD4821AF225D99EBCE9B22152
tep://10.193.16.62:12346
1950EDDFD4821AF225D99EBCE9B22152
tep://10.193.16.62:12347

FelixID
0468680B8D9D0388D8D1078B725D2E38

238B9263BA79A05378652F433A25C949

4E418C3646578B46FDI39AF6ACSFFB5B

C87FAE7D74FC1D99BFB454ACD74EBA23

ElinkTable::print(): table.size()=10

PeerId

1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152

FelixId

238B9263BA79A05378652F433A25C949
C87FAE7D74FC1D99BFB454ACD74EBA23
4E418C3646578B46FDI39AF6AC5FFB5B
0468680B8D9D0388D8D1078B725D2E3B
238B9263BA79A05378652F433A25C949
C87FAE7D74FC1D99BFB454ACD74EBA23
4E418C3646578B46FD939AF6AC5FFB5B
0468680B8D9D0388D8D1078B725D2E3B
238B9263BA79A05378652F433A25C949
C87FAE7D74FC1D99BFB454ACD74EBA23

Address

ElinkId
3735579
3735580
3735591
3735618
3735676
3735701
3735729
3735732
3735739
3735741

The example shows that there is one felixcore instance running (peer ID 1950...) with four threads
(FELIX ID 0468..., 238B..., 4E41..., C87F...), each reachable on a separate TCP port. This felixcore
instance handles 10 different E-Links which are distributed among the four worker threads.

7.8. Debugging

7.8.1. Using the FelixCore event tracing framework

FelixCore includes a trace framework that can be used to gain a better understanding about
latencies added by individual parts of a communication chain or to get detailed information about
the dataflow of a single message through the system. The trace framework operates by logging
events with precision timestamps to a file.

To enable the trace framework, start the felixcore application with the option \verb|--trace].
FelixCore will then timestamp events and record these events in a file "trace.csv" in the current
working directory.

The contents of trace.csv will contain of lines similar to this:

20605900, MSG_RECV, 0
20606530, FROMHOST _BLOCK_WRITE_START, @
20606584, FROMHOST _BLOCK_WRITE_COMPLETE, @

The CSV file contains three columns.

1. The first column contains the timestamp of the event in microseconds.

2. The second column contains the type of the event. Currently we have these events:

TOHOST BLOCK _READ
Issued when a 1 kB block is read from the FLX card

FROMHOST BLOCK_WRITE_START
Start of DMA transfer of blocks to the FLX card

FROMHOST_BLOCK_WRITE_COMPLETE
DMA transfer to the card completed

MSG_RECV

A message was received from the network for an E-link

MSG_SEND

A data chunk is published and is being sent to clients in the network
3. The third column contains an E-Link id that associates an event with an E-link if applicable.

Note that the trace.csv file is not sorted by timestamp. If needed, the events in the file need to be
sorted in a post-processing step.

Chapter 8. Felix-star Application and NetIO-
next

8.1. Introduction

The felix-star application is the central process of a FELIX system, responsible for data transfers to
and from the FELIX host. Active e-links, enabled with elinkconfig or similar, are advertised by felix-
bus for both directions. In the to-host direction, felix-star sends data coming from the FELIX card to
the clients according to their e-link subscriptions. In the from-host direction messages received
through enabled e-links are transferred to the card.

The communication with felix-star over the network is managed by the NetlO-next library, based
on libfabric and capable of exploiting RDMA technology. Two communication modes are defined to
address the needs of different use-cases. The buffered mode implements data coalescing and is
preferable when the data flow consists of many small messages (tens of bytes each). In practice,
messages fill buffers called netio pages (of configurable size and number). Once the occupancy of a
page exceeds a threshold (called watermark, also configurable) the page is sent. This approach
decreases the overhead introduced by each transfer. The unbuffered mode targets a high-troughput
scenario in which fewer links handle large messages (~kB). In this mode each message is
transferred right away.

Client applications, such as the ATLAS SW ROD and OPC-UA server, do not have to interface directly
with NetIO-next but are instead encourage to take advantage of the felix-client-thread C++ interface.
In particular, the felix-client-thread reads the connection parameters (connection mode, number
and sizer of netio pages) directly from the felix-bus.

Felix-star can print monitoring information formatted in JSON in local UNIX FIFOs and publish the
same information over e-links. Later versions will include a web front-end.

8.2. Architecture

Different independent processes are responsible for the felix-star functionalities described above,
as illustrated in Figure 28. Considering a setup with a single FLX-712 card, two felix-tohost
processes, one per PCI-E endpoint, are instantiated to read the and forward the data coming from
the card. Similarly, two felix-toflx processes are needed to serve all the from-host links. Both felix-
tohost and felix-toflx write information about throughput statistics, recorded errors and published
e-links in UNIX FIFOs. The fifoZelink utility reads the FIFOs and makes the read data available to
clients via additional e-links (dubbed virtual as they do not correspond to e-links existing in
firmware). The dir2bus utility reads exclusively the FIFOs containing information about the e-links
and serves the felixbus. Finally the felix-busy-tohost and felix-busy-toflx applications allow to
monitor and raise the busy status of a FELIX card. Details on each application are presented in
Section 8.3, while their orchestration is discussed in Section 8.4.

/ E-links

felix-tohost Data Out 0
I N

felix-toflx Dataln O

Device 0

felix-busy-tohost Busy Out

REG
/ - felix-busy-toflx

I
felix-tohost Data Out 1
[]

o fe"“o“ I Data In 1
FLX-712 Card stats 1 I| fifo2elink Statistics
errors fifo2elink Errors

bus felixbus

dirZbus
FELIX STAR
Architecture | Other FLX-712 Cards

Figure 28. The architecture of the FELIX star application.

8.3. Felix Star commands

All felix-star-related commands are listed below. Some commands correspond to the application
already described, while others consist of small utilities for configuration or debugging purposes
(e.g. file2host, display-stats, get-config-value, get-ip,..)

8.3.1. felix-star
All processes can be launched using the felix-star command, or, alternatively, by the individual

executables. Either way, a short help text is available from the command line.

Unresolved directive in 8 felix_star.adoc - include::include/felix-star.txt[]

8.3.2. felix-tohost

The main FELIX readout command is felix-tohost. Each instances reads only one PCI-E endpoint i.e.
one "device". Felix-tohost is automatically run in buffered mode for GBT and unbuffered mode for
FULL mode. By default data e-links are published on port 53100+X, while the TTC2H e-link is
published on 53120+X, where X is the device number.

Usage:

_b,

-d,

i

-w,
=7

o

-V,

felix-tohost [OPTION...]
FELIX central data acquisition application

--netio-pagesize=SIZE NetIO page size in Byte. Default: 64kB

--buffered
--bus-dir=DIRECTORY

--bus-groupname=NAME
--netio-pages=SIZE
--cmem=SIZE

--cid=N

--co=N

--device=DEVICE
--did=N

--dma=ID
--elink-offset=N
--error-out=FIFO0
--free-cmem
--ip=IP
--port=PORT
--poll-period=ns
--stats-out=FIFO0

--stats-period=ms
--ttcport=PORT

Enable buffered mode (FULL-mode only)

Write felix-bus information to this directory.
Default: ./bus

Use this groupname for the bus. Default: FELIX
Number of NetIO pages. Default: 256

CMEM buffer size in MB. Default: 1024

CID (Connector Id) to set in FID (Felix ID),
incompatible with --co. Default: 0

CO (Connector Offset) to offset FID (Felix ID),
incompatible with --did and --cid.

Use FLX device DEVICE. Default: @

DID (Detector Id) to set in FID (Felix ID),
incompatible with --co. Default: 0

Use DMA descriptor ID. Default: @

Offset for elinks as they are output and published
from felix-star (compatibility option). Default:
0

Write error information to a UNIX FIFO

Free previously booked cmem segment by
name-<device>-<dma>

Publish data on the ip address IP. Default:
localhost

Publish data on port PORT. Default: 53100 +
10*device + dma

Polling instead of interrupt-driven readout with
the given poll period in nanoseconds

Write periodic statistics data to a UNIX FIFO
Period in milliseconds for statistics dumps
Publish TTC2H data on port PORT. Default: 53300 +
10*device + dma

--ttc-netio-pages=SIZE TTC Number of NetIO pages. Default: 256
--ttc-netio-pagesize=SIZE TTC NetIO page size in Byte. Default: 256kB
--ttc-netio-watermark=SIZE TTC NetIO watermark in Byte. Default: 56kB

--verbose
--vid=N

Produce verbose output
VID (Version Id) to set in FID (Felix ID),
incompatible with --co. Default: 1

--netio-watermark=SIZE NetIO watermark in Byte. Default: 56kB

--help
--usage
--version

Give this help list
Give a short usage message
Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

Report bugs to <atlas-tdag-felix-developers@cern.ch>.

For example, a subsystem with Detector ID 0x12 wanting to connect to both devices on a single
FELIX card would do the following:

felix-tohost --did @0x12 --cid 0x10 -d @ # Device @, links @0-11 in flx-info LINK,
links ©0-11 in FelixID 'Link ID field'

felix-tohost --did 0x12 --cid 0x11 -d 1 # Device 1, links 12-23 in flx-info LINK,
links ©0-11 in FelixID 'Link ID field'

Here, the connector ID --cid corresponds to each of the up to two optical fibre bundles connected
to the FELIX card in question. As part of the FelixID structure these should also have their own ID,
which is unique for a given Detector ID. In the example above they are 0x10 and 0x11 respectively.

Note - the FelixID field also includes a separate 'LinkID' structure, which counts from zero for each
connector ID. Hence link 0-11 appears twice above, even though for the second device these links
correspond to links 12-23 in the output of flx-info LINK.

8.3.3. felix-toflx

The main FELIX control command is felix-toflx. Each instance serves one PCI-E endpoint i.e. one
"device". Upon startup felix-toflx listens the enabled e-links and forwards the received data to the
card. The felix-toflx process can be run in either buffered (default) or unbuffered mode. The
network port used by default is 53140+X, where X is the device number.

Usage: felix-toflx [OPTION...]
Host-to-Felix communication application (DCS)

-b, --netio-buffersize=SIZE NetIO receive buffer size in byte; maximum size
for a single message. Default: 64kB
--bus-dir=DIRECTORY Write felix-bus information to this directory.
Default: ./bus
--bus-groupname=NAME Use this groupname for the bus. Default: FELIX
-B, --netio-buffers=SIZE Number of NetIO receive buffers. Default: 256

-c, --cmem=SIZE CMEM buffer size in MB. Default: 20
--cid=N CID (Connector Id) to set in FID (Felix ID),
incompatible with --co. Default: 0
--co=N CO (Connector Offset) to offset FID (Felix ID),
incompatible with --did and --cid.
-d, --device=DEVICE Use FLX device DEVICE. Default: O
--did=N DID (Detector Id) to set in FID (Felix ID),
incompatible with --co. Default: 0
-D, --dma=ID Use DMA descriptor ID. Default: highest dma
--error-out=FIF0 Write error information to a UNIX FIFO
--free-cmem Free previously booked cmem segment by
name-<device>-<dma>
-i, --ip=IP Send data to the ip address IP. Default: localhost
-m, --cdma Use circular DMA buffer. Default: one-shot
-p, --port=PORT Send data to port PORT. Default: 53200 + 10*device
+ dma
--stats-out=FIF0 Write periodic statistics data to a UNIX FIFO:
path to fifo. Default: disabled
--stats-period=MS Period in milliseconds for statistics dumps.
Default: 1000
--stats-stdout Prints stats to stdout. Default: false
-u, --unbuffered Use unbuffered mode
-v, --verbose Produce verbose output
--vid=N VID (Version Id) to set in FID (Felix ID),

incompatible with --co. Default: 1
-w, --netio-watermark=SIZE NetIO receive watermark size in byte; start of
flush. Default: 56kB

-7, --help Give this help list
--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

Report bugs to <atlas-tdaq-felix-developers@cern.ch>.

8.3.4. felix-busy-tohost

The felix-busy-tohost command monitors the Busy signal and publishes its information on an e-

link. As each card has only one busy input you would only need to run one felix-busy-tohost
process per card.

Unresolved directive in 8_felix_star.adoc - include::include/felix-busy-tohost.txt[]

8.3.5. felix-busy-toflx

The felix-busy-toflx process allows the busy to be raised via an e-link. As each card has only one
Busy connector you would only need to run one felix-busy-toflx process per card.

Unresolved directive in 8_felix_star.adoc - include::include/felix-busy-toflx.txt[]

8.3.6. felix-fifo2elink

The felix-fifo2elink process is used to read out the error or monitoring FIFO and publish the
information as an e-link. The FIFOs are written by all felix-tohost and felix-toflx processes at the
same time.

Publish JSON fifo and routes to one or more e-links (FIDs)

Usage:
felix-fifo2elink [options] <fifo> <hostname_or_ip> <port> <elink> (<did> <cid>)...

Options:
-b, --netio-pagesize=SIZE NetIO page size in kilobytes [default: 64]
-B, --netio-pages=N Number of NetIO pages [default: 256]
-g, --bus-groupname GROUP_NAME Group name to use for the bus [default: FELIX]
-b, --bus-dir DIRECTORY Directory to use for the bus [default: ./bus]
-v, --verbose Verbose output
-w, --netio-watermark=SIZE NetIO watermark in kilobytes [default: 56]
--error-out=fifo (NA) Write error information to the error FIFO
Arguments:
<fifo> FIFO (JSON) to read from
<hostname_or_ip> Hostname or IP to publish from
<port> Port number to use
<elink> Elink to use for FID
<did> DetectorID to use for FID
<cid> ConnectorID to use for FID

8.3.7. felix-dir2bus

The felix-dir2bus process monitors the bus directory for new files and changes to those files. These
files are one by one written by each of the felix-tohost and felix-toflx processes. The files are kept
open as long as the process is running. felix-dir2bus reads the information from the files and
publishes it to the FELIX bus.

Unresolved directive in 8 felix_star.adoc - include::include/felix-dir2bus.txt[]

8.3.8. felix-elink2file

The felix-elink2file debug utility writes the input on an E-link into a file. Not to be used for Data
Acquisition.

Subscribe an e-link and output to file.

Usage:
felix-elink2file [options] <local_hostname> <fid> <file>

Options:

-b, --bus-dir DIRECTORY Directory for the bus [default: ./bus]

-g, --bus-groupname GROUP_NAME Group name to use [default: FELIX]

-v, --verbose Verbose output

--error-out=fifo (NI) Write error information to a UNIX FIFO
Arguments:

<local_hostname> Internet hostname to subscribe from

<fid> FID to subscribe to

<file> File to write to

8.3.9. felix-file2host

The felix-file2host takes a raw data file and reads it as if it was a FELIX card. The e-links used in the
raw data file have to be specified in the command line.

Usage: felix-file2host [OPTION...] FILE
FELIX central data acquisition application

-b, --netio-pagesize=SIZE NetIO page size in Byte. [default: 64kB]

--block-size=SIZE Use as block size, multiple of 1024. [default:
1024]
--buffered Enable buffered mode (FULL-mode only)

--bus-dir=DIRECTORY Write felix-bus information to this directory.
Default: ./bus
--bus-groupname=NAME Use this groupname for the bus. Default: FELIX
-B, --netio-pages=SIZE Number of NetIO pages. [default: 256]

-c, --cmem=SIZE CMEM buffer size in MB. [default: 1024]
--cid=N CID (Connector Id) to set in FID (Felix ID),
incompatible with --co. Default: 0
--co=N CO (Connector Offset) to offset FID (Felix ID),
incompatible with --did and --cid.
-d, --device=DEVICE Use FLX device DEVICE. Default: @
--did=N DID (Detector Id) to set in FID (Felix ID),

incompatible with --co. Default: 0

-D, --dma=ID Use DMA descriptor ID. Default: @

--error-out=FIFO Write error information to a UNIX FIFO
--free-cmem Free previously booked cmem segment by
name-<device>-<dma>
-i, --ip=IP Publish data on the ip address IP. [default:
localhost]
-m, --full-mode Use full-mode. [default: gbt-mode]
-p, --port=PORT Publish data on port PORT. [default: 53100 +
10*device + dma]
-P, --poll-period=ns Polling instead of interrupt-driven readout with

the given poll period in nanoseconds
--regmap=hex_version Register map version. Default: 0x0400

--stats-out=FIF0 Write periodic statistics data to a UNIX FIFO
--stats-period=ms Period in milliseconds for statistics dumps
-s, --ism Ignore check on sequence numbers in blocks.
--ttc2h-enable Enable TTC2H elink
--ttcport=PORT Publish TTC2H data on port PORT. Default: 53300 +
10*device + dma
-t, --tag=TAG Read tag (elink) from file. This option may be

used multiple times (2048 max).
--trailer-size=SIZE Use as trailer size, 2 or 4. [default: 4]

-u, --stream=TAG Read tag (elink streams) from file. This option
may be used multiple times (2048 max).
-v, --verbose Produce verbose output
--vid=N VID (Version Id) to set in FID (Felix ID),
incompatible with --co. Default: 1
--vmem Use virtual memory. [default: cmem]
-w, --netio-watermark=SIZE NetIO watermark in Byte. [default: 56kB]
-7, --help Give this help list
--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

Report bugs to <atlas-tdag-felix-developers@cern.ch>.

8.3.10. felix-display-stats

The felix-display-stats debug utility connects to the monitoring FIFO and displays some statistics
info on the terminal. As one can only have one reader on a FIFO this utility cannot be run at the
same time as felix-fifo2elink on the same monitoring FIFO.

Shows stats for debugging.

Usage:
felix-display-stats [options] <stats-fifo>

Options:
-h, --help Display this help
-V, --version Display version
Arguments:
<stats-fifo> Fifo where statistics are written.

8.3.11. felix-get-config-value

The felix-get-config-value command retrieves a hostname-device-mode-key indexed value from the
FELIX configuration file. Available keys are: 'iface’, 'did’, 'cid' and 'elink_config'. The configuration
can be setup to run in FULL mode or GBT mode depending on the firmware found in the card.

This utility has been designed for deployment within the ATLAS infrastructure (rather than a user
testlab). The elinkconfig .elc/.yml files listed indicate which configuration file has to be loaded on a
card in the start-up sequence of a FELIX PC

An example of a config file follows:

host_name deviceff mode interface detector id (8 bit) connector id (20
bit) elink config

pc-tbed-felix-04 @ gbt eth-100-0 0x07 0x12000
gbt-mode-2bits.elc

pc-tbed-felix-04 1 gbt eth-100-0 0x07 0x12010
gbt-mode-2bits.yml

pc-tbed-felix-04 2 gbt eth-100-0 0x07 0x12000
gbt-mode-2bits.elc

pc-tbed-felix-04 3 gbt eth-100-0 0x07 0x1b000
gbt-mode-2bits.elc

pc-tbed-felix-04 @ full eth-100-0 0x07 0x12000
full-mode-8bits.elc

pc-tbed-felix-04 1 full eth-100-0 0x07 0x12010
full-mode-8bits.yml

pc-tbed-felix-07 0 full eth-25-0 0x20 0x1b000
full-mode-8bits.yml

pc-tbed-felix-07 1 full eth-25-0 0x20 0x1b010

full-mode-8bits.yml

Lookup variables from felix configuration file.

Usage:
felix-get-config-value [options] <host_name> <device> <mode> <key>

Options:
-h, --hex Hexadecimal output
-v, --verbose Verbose output
-c, --config=FILE Specify FELIX config file [default: felix.cfq]
Arguments:
<host_name> Hostname or ip, as declared in the felix config
<device> FLX device number
<mode> Mode of the device ('gbt', 'full'), see felix-get-mode
<key> Item to be retrieved (e.qg. 'iface', 'did', 'cid' or

"elink_config')

Config file format:
comments
host_ip device mode interface detectorid connectorid elinkconfig [# comments]

8.3.12. felix-get-ip
The felix-get-ip command retrieves the IP for a given interface name. This interface name is

retrieved using the felix-get-config-value command. The IP is used to start felix-star.

Return (first or fastest) ip4 address for interface or the list of available
interfaces.

Usage:
felix-get-ip [options] [<interface_name>]

Options:
--fastest Return ip for fastest network
-v, --verbose Verbose output
Arguments:
<interface_name> Name of the ethernet interface, see ifconfig

Config file format:
comments
host_ip device detectorid connectorid elinkconfig [# comments]

8.3.13. felix-get-mode

The felix-get-mode command returns the mode for a particular device. It is used to lookup values in
the configuration using felix-get-config-value.

Return mode for device.

Usage:
felix-get-mode [options] <device>

Options:
-v, --verbose Verbose output
Arguments:
<device> Device number
8.3.14. felix-fid

The felix-fid utility translates and decodes FIDs to DID, CID, E-Link, TID and SIDs and vice-versa.
Full details of the structure of an FID can be found in:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/LinkMappingSpecification.pdf

Usage: felix-fid [OPTION...] <felix id>
or: felix-fid [OPTION...]
<detector id> <connector id> <link id> <transport id> [<stream
id>]
FELIX FID conversion (accepts hex @x, binary @b and octal 0)

-c, --cid print Connector ID

-d, --did print Detector ID

-e, --elink print E-Tink

-h, --hex print in hex format

-i, --vid print Version ID

-1, --1id print Link ID

-0, --CO print Connector Offset

-s, --sid print Stream ID

-t, --tid print Transport ID

-u, --update=VERSION Update Version ID. Default: 1

-v, --verbose Produce verbose output

-7, --help Give this help list
--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

Report bugs to <atlas-tdaq-felix-developers@cern.ch>.

Verbose output of FID 0x123456789abc3def for example shows:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/LinkMappingSpecification.pdf

e B e e T e S 1

|FID |
| 0x123456789abcdef0|
| 1311768467463790320 |
D T T e S ETr S
cO	GID
0x1234567	0x89abcdefo
19088743	36955807472
T T T B S B i bt ST TEEE SR S S S	
VID	DID

[0x1| 0x23| 0x4567 | 0x226a| 0x3cde| OxfO|
| 1] 35| 17767 | 8810| 15582| 240|
e e S e e e T S e e e et SaeTE SR
|VID|DID |CID |V Elink ID Proto|SID

[ox1| 0x23| 0x4567 |1 0x09abc|1 Ox5e| 0xf0O|
| 1] 35| 177671 30612|1 94| 240|

e e B e e et S S B e S e A EEt SRR

FID: (64 bits) - Felix ID
CO: (28 bits) - Connector Offset
GID: (36 bits) - Generic ID

VID: (4 bits) - Version ID
DID: (8 bits) - Detector ID
CID: (16 bits) - Connector ID
LID: (14 bits) - Link ID

TID: (14 bits) - Transport ID
SID: (8 bits) - Stream ID

V: (1 bit) - Virtual
Elink: (19 bits) - As used in the FELIX card
D: (1 bit) - Direction [@=tohost, T1=toflx]

Proto: (7 bits) - Protocol

8.4. Startup and Configuration

Superviord provides a convenient solution to startup and shutdown all the processes needed to run
a full felix-star configuration. Supervisord is included in the FELIX distribution and needs only a
few configuration files for which examples are provided.

To launch supervisord type from the root directory of the distribution:
supervisord

which tries to find the 'etc' directory just below the current directory. It parses all the configuration
files. The 'etc' directory also contains felix.cfg which has to be edited according to the user’s setup.

To start felix-star all processes in GBT mode type:

supervisorctl start gbt:*
To shutdown all processes and supervisord itself type:
supervisorctl shutdown

More commands in 'supervisorctl --help' are available.

0 neither flx-init nor feconf (elinkconfig) is run at this moment by supervisord.

8.5. Monitoring

Native monitoring is being developed and currently not part of the release. The felix-display-stats
utility described above can be used for the moment.

8.6. Discovering E-links with the FELIX BUS system

Clients that want to receive data from or send data to specific E-links need to know by which FELIX
instances the desired E-links are managed. The FELIX BUS system is used for this purpose. FELIX
instances broadcast at regular intervals information about connected E-links. Clients can retrieve
this information and build internal lookup tables using the library libfelixbus.

The E-Link IDs published by felixcore are global FELIX IDs, i.e. they uniquely identify E-links across
all FELIX hosts. This requires that the Detector ID and Connector ID options are set (command line
option --did and --cid). The default did and cid are 0 are fine to use for tests where only a single
felix-tohost is running.

The tool felix-buslist can be used to display the tables:

$ felix-buslist -t
Tables in FelixBus (ctrl\ to quit)

FelixTable::print(): table.size()=1

PeerId FelixInstanceID Address PubSub
Unbuffered PageSize Pages

1950EDDFD4821AF225D99EBCE9B22152 0468680B8DIDA388D8D1078B725D2E3B
tep://10.193.16.62:53100 ...

ElinkTable::print(): table.size()=2

PeerId FelixInstanceld FID or ElinkId
1950EDDFD4821AF225D99EBCE9B22152 ©0468680B8D9DA388D8D1078B725D2E3B 3735618
1950EDDFD4821AF225D99EBCE9B22152 0468680B8DIDA388D8D1078B725D2E3B 3735732

The example shows that there is one felix-tohost instance running on a host (peer ID 1950...) with
Felix Instance ID (0468...). This felix-tohost instance handles 2 different E-Links.

8.7. Subscribing to streams

In order to make use of the streaming feature, support must be enabled for the links in question
using feconf or elinkconfig. This will cause felix-star to publish the full set of 256 FIDs
corresponding to the available streams on that link. The stream ID is the last byte in the FID, which
will therefore have the value 0-255 (rather than the default value of 0).

It is then possible to subscribe to a particular FID as normal by additionally setting the last byte to
that StreamlID, 0-255. The front-end corresponding to the links in question should then make sure to
put the correct stream ID in the first byte of every packet sent over the link. FELIX will then
guarantee to route the packet correctly to client applications with the appropriate subscription.

8.8. Quick start and testing procedures

8.8.1. Check connectivity and data transmission (no felix-bus)
Given a PC equipped with a FELIX card receiving or generating data the minimal set of commands

to verify the felix-star functionality are, from any directory:

mkdir bus
mkfifo stats
felix-tohost --bus-dir ./bus --ip <IP of the network interface> --stats-out=stats

the monitoring statistics can be visualised with felix-display-stats or simply with "cat < stats . It is
then possible use a client application. In case the connection is buffered (default for GBT firmware):

felix-test-swrod-buffered <local-ip> <remote-ip> <port> -t <first e-link> -t
<second e-link> -t <third e-link> ...

In case the connection is unbuffered

felix-test-swrod-unbuf <local-ip> <remote-ip> <port> -t <first e-link> -t
<second e-link> -t <third e-link> ...

These applications use the e-link number and not the FID to identify e-links. For example, the 2-bit
GBT e-links of group 1 are 8, 9, 10, 11, 12, 13, 14, 15, while for FULL mode the links are 0, 64, 128,
192, 256, 320,

8.8.2. Check connectivity and data transmission (incl. felix-bus)

In order to include the felix-bus in the test the minimal set of commands is

mkdir bus

mkfifo stats

felix-tohost --bus-dir ./bus --ip <IP of the network interface> --stats-out=stats
felix-dir2bus -i <interface name> ./bus

Then, on the client side the published links can be discovered with
felix-buslist -i <interface name> -t

Then it is possible to subscribe with
felix-client-thread-subscribe <local_ip_or_interface> <fids>

In this case the connection parameters are resolved via the felix-bus.

8.9. The felix-client-interface

Connecting to felix-star can also be done using a generic felix-client-interface. This interfaces
defines a small number of methods to subscribe to and unsubscribe from an e-link, send data to an
e-link and get notified when a connection succeeds and when it fails. On reception of data a
callback function is called. The implementation of this interface takes care or re-subscribing if a
connection is lost. It also takes care of talking to felix-bus to look up the machine, port number and
other parameters for the connection. The user of the felix-client-interface is only concerned with
data and E-links/FIDs. All these functions run in a single felix-client thread. If you want to execute a
user function on the same thread an exec function is provided.

The interface looks like this:

class FelixClientThreadInterface {

public:

typedef std::function<void (uintb4_t fid, const uint8_t* data, size_t size,
uint8_t status)> OnDataCallback;

typedef std::function<void ()> OnInitCallback;

typedef std::function<void (uintb4_t fid)> OnConnectCallback;

typedef std::function<void (uint64_t fid)> OnDisconnectCallback;

typedef std::function<void ()> UserFunction;

typedef std::map<std::string, std::string> Properties;

struct Config {
OnDataCallback on_data_callback;
OnInitCallback on_init_callback;
OnConnectCallback on_connect _callback;
OnDisconnectCallback on_disconnect_callback;
Properties property;

};
virtual ~FelixClientThreadInterface() {};

virtual void send data(uint64_t fid, const uint8 t* data, size_ t size, bool flush)
:@;

virtual void subscribe(uint64_t fid)

:0;
virtual void unsubscribe(uint64_t fid) =

0;
virtual void exec(const UserFunction &user_function) = 0;

¥
Examples on how to use the interface are available at:
https://gitlab.cern.ch/atlas-tdaqg-felix/felix-client/-/tree/master/examples
To use the felix-client-interface and link with its proxy use:
https://gitlab.cern.ch/atlas-tdaq-felix/felix-client-thread
and use the build-standalone.sh script to create the library to link with.

To run with the felix-client-interface you will need a felix installation setup. The proxy will find the
felix installation and load all the necessary files underneath.

https://gitlab.cern.ch/atlas-tdaq-felix/felix-client/-/tree/master/examples
https://gitlab.cern.ch/atlas-tdaq-felix/felix-client-thread

Chapter 9. FAQ, Troubleshooting and User
Resources

This section is aimed at collecting useful information for front-end developers to aid the design and
implementation of front-end firmware/hardware for interaction with FELIX. Useful tips based on
experience so far will also be presented, in a section that will grow over time as more feedback is
received.

9.1. Frequently Asked Questions

1.

Is GBT wide mode supported?

Not currently, can be reviewed on request.

Is GBT 8b/10b mode supported?

8b/10b encoded E-links within GBT frames are supported, but this is different from native GBT
'8b/10b frame mode', which is not supported.

Is the phase of the eight "utility" clocks fixed with respect to the E-link clocks?

Yes, there is a fixed relationship with the E-Link clocks. Note that the eight utility clocks have

worse jitter than the E-link clocks.

Can the GBT output a 40 MHz E-link clock, use that clock in 40 MHz DDR mode for the to-frontend
link, but accept data on the uplink at 160 or 320 Mb/s? (Assuming the FE ASIC multiplies the 40
MHz to 80, 160 or 320 MHz.)

Yes, that is possible. Also the to-frontend link can receive at 80, 160 or 320 Mb/s.

Is there a maximum packet length on the E-link in 8b/10b mode?
No.

Are direct mode a.k.a. unencoded E-links supported in GBT mode?

Not by default in the Phase-I firmware, but this being integrated into Phase-II builds. Please
contact the FELIX team for more information.

Can FELIX support additional (or custom) link protocols as they are developed?

FELIX will not support additional (or custom) link protocols unless well motivated by a detector
requirement. If you think you will need to introduce an additional protocol please contact the
FELIX team before making any final implementation decision.

9.2. Troubleshooting

9.2.1. Known Issues with GBTx

* Links disconnected from any front-end source generate spurious data at random intervals. If

using FELIX with a GBTX, it is strongly recommended that any links which are disconnected
from the front-end be deactivated in elinkconfig. This will prevent spurious data causing
confusion in front-end testing. The effect of spurious data from accidentally or temporarily
disconnected E-links can be minimized by using the packet truncation options.

* The loading of the configuration from the e-fuses on power-on is not reliable. The GBTx must be
explicitly configured on every power-on. For GBTX' used only as transmitters, a way to
configure them via I2C must be provided.

9.2.2. IOMMU

Some users have experienced problems with DMA transfers on systems with an active IOMMU. If
your FLX card is recognized correctly but the DMA transfers are not working, check the kernel logs.
If you find DMAR errors on memory access, it could be that the kernel is running with intel-iommu
enabled, and you will need to disable every memory mapping by hand. This can be done by
executing the command:

dmesg | grep -i -e DMAR -e IOMMU

After disabling IOMMU, the card should work without any issue.

9.2.3. File Descriptor (FD) Limit

Depending on the setup of your operating system, it may be necessary to change the FD limit to
avoid running out of descriptors and experiencing the following types of error:

For felixcore:

terminate called after throwing an instance of 'std::system_error' what(): Too many open files
Aborted (core dumped)

For OPC-UA:

terminate called after throwing an instance of 'std::runtime_error' what(): could not connect
to endpoint 128.141.177.225:12351 Aborted (core dumped)

The current FD limit on can be seen by running:
ulimit -aH
and looking for the entry marked 'open files'.

The limit can be changed by modifying /etc/security/limits.conf. It is recommended to set the
limit to the maximum available value, namely 65536.

9.2.4. Debugging Link Status

When using flx-info to check the status of your links, note that this only corresponds to alignment
of incoming (Rx) links, for which it is possible to recover a clock. To check the status of links from
FELIX to other electronics it is recommended to implement dedicated monitoring to check
alignment there.

In the case of the FLX-712 card, flx-info does provide incoming and outgoing optical power
measures, so this should be used to confirm whether a link problem is due to a problem with an
optical fibre or light transmission from FELIX.

9.2.5. SMBus Access

SMBus access, as needed for the fflash tool, has been found to not work on Supermicro servers with
an X11SPW-TF motherboard when using default factory configuration. However, Supermicro has
provided custom firmware, which provides this support by means of "ipmitool raw" commands.
This is firmware for the IPMI interface, i.e. not a BIOS, and has to be loaded via the IPMI network

connection. The firmware is available here:

https://drive.google.com/open?id=1eVae35mJhdRZam3WIfW0OYM2cpXpCz5yB

The file to be loaded is BETA_X11DP_Xilinx Kintex_UltraScale FPGA 982 20190628.bin. Follow this

description to load it:

https://www.supermicro.com/manuals/other/IPMI_Users_Guide.pdf (chapter 2-99)

The following test with fflash has been done using the latest BIOS and after reloading the BETA

firmware. Thanks to Henk Boterenbrood for performing the test.

The help information reported by fflash -h is as follows:

fflash version 21020800

Tool for loading a firmware image from one of the partitions
of the onboard flash memory of an FLX-712 into the card's FPGA,
issueing commands to the host system I2C bus to achieve this.

A subsequent hotplug procedure or machine reboot is required.

Usage: fflash [-h|V] [-q] -f <flashnr>

[[-L|I] [-U|P -d <devslot>] [-S] [-b <busnr>] [-r <chan>]
[-s <saddr>] [-u <uaddr>] [-T <sec>]]

: Show this help text.

: Show version.

: Be quiet (only errors will be displayed).

-h
-V
-q
i
-1
-1

<flashnr>:

Flash memory segment partition [0..3] selection (no default).

: Generate an INIT_B pulse on the FLX-card (to reset flash devices).
: Load firmware from the given flash partition into the card.

The following options are relevant in conjunction with the -L and/or -I option:

-b
-r

-S

-d

<busnr>
<chan>

<addr>

<addr>

: I2C-bus number (default=0).
: Riser card I2C-switch channel number (default=0).

NB: I2C-switch has hard-coded I2C address 0x70.

: I2C-switch I2C-address (hex, default=0x77, expected range: 0x70-0x77).

NB: 0x70 already taken by the riser card I2C-switch!

: uC I2C-address (hex, default=0x67, expected range: 0x60-0x67).

: Use USB I2C-dongle instead of system SMBus

(requires scripts i2cset.py and i2cget.py installed in /opt/flx).

: Use "ipmitool' to access system SMBus.

<sec>
<devslot>:

INB: use -d option to select 'device slot': 1 or 2.

: Set 'Prog-done’ timeout [s] (default: 7)

Device slot (1 or 2), only in combination with -P.

: Preceed calls to i2cget/set or ipmitool with 'sudo'.

(default: 'sudo' not used; applies to options -L|I|P|U).

https://drive.google.com/open?id=1eVae35mJhdRZam3WlfW0YM2cpXpCz5yB
https://www.supermicro.com/manuals/other/IPMI_Users_Guide.pdf

Examples:
Load flash memory image partition #2 into the card:
fflash -f 2 -L

Load flash memory image partition #2 into the card, using I2C-bus #1,
riser card I2C-switch channel #@, FLX-card I2C-switch address 0x75 and
FLX-card microcontroller I2C-address 0x65:

fflash -f 2 -L -b 1 -r @ -s 75 -u 65

How to determine the I2C-switch and uC I2C addresses
(options -s and -u respectively) :
Note 1: there is an I2C-bus number (option -b) to select as well,
which is assumed to have the value '1' (following '-y') in the examples below.
Note 2: in the standard FELIX server there is an additional I2C-switch
on the socalled riser card; its channel is selected using option -r;
it means that the 2 FLX-cards in such a server may have identical
'-s' and '-u' addresses, i.e. most likely their defaults
while the riser card setting is: 'top' position = -r @, 'bottom' = -r 1.
"sudo i2cdetect -y 1' should show you an address in the range 0x70-0x77,
let's say @0x77; this is then the address to use in option -s;
subsequently run 'sudo i2cset -y 1 @x77 1' to set the I2C-switch
causing an additional address in the range 0x60-0x67 to appear
in the output of 'sudo i2cdetect -y 1', so run that command again;
this is the address to use in option -u.
On the FLX-712 dipswitch 114 configures the '-s' and '-u' addresses:
switch 1-3 to set 3 LSBs of '-s', i.e. 0x70-0x77
switch 4-6 to set 3 LSBs of '-u', i.e. 0x60-0x67

Example of the use of fflash to configure the FPGA from partition 2 of the FLASH memory (the
program has to be run using sudo due to the use of "sudo ipmitool” commands):

fflash -f 2 -P -L -d 2 -u 63 -s 76

Parameters:
-f 2: partition 2
-P: use of ipmitool

-L: load firmware from FLASH memory
-d 2: card in slot 2 from riser

-u 63: i2c address of card is 0x63 (can be set with jumpers on the card)

-s 76: address i2c switch on riser is 0x76

Output program with these command line parameters for our machine:

=> Load firmware partition 2 (I2C via IPMI: switch=@xec, u(C=0xcb):
sudo ipmitool raw 0x30 0x70

sudo
sudo
sudo
sudo
sudo

Prog
sudo

ipmitool
ipmitool
ipmitool
ipmitool

ipmitool

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

done (time: 1320 ms)

ipmitool

raw 0x30 0x70

sudo ipmitool raw 0x30 0x70

0xd5 27 1 2 236

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 236

=> Pulse INIT_B (I2C via IPMI: switch=0xec,
sudo ipmitool raw 0x30 0x70

sudo

sudo

sudo

sudo

sudo

sudo

ipmitool
ipmitool
ipmitool
ipmitool
ipmitool

ipmitool

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

0xd5 27 1 2 236

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 236

01

0 17 0 16
0 16 56

0 17 48
018 0
112

016 0
00

uC=0xcb):
01

019 4
018 4
019 0
019 4
018 @

00

An attempt to read from an incorrect address looks like this:

sudo ipmitool raw 0x30 0x70 @0xd5 27 1 2 208 1 12

Unable to send RAW command (channel=0x@ netfn=0x30 lun=0x@ cmd=0x70 rsp=0x83): Unknown
(0x83)

Form of the ipmitool raw command:

ipmitool raw 0x30 0x70 0xd5 27 1 slot address readcount writedata

slot: device slot: 1 or 2

address: 12 address

readcount: number of bytes to read, if 0: no bytes to read
writedata: bytes to be written

NB: The ipmitool raw command requires the addresses to be shifted one bit to the left

9.2.6.

Problems with CMEM allocation on boot

Note - if you have a network-booted system (e.g. managed by the ATLAS TDAQ Sysadmins in the
context of the ATLAS testbed infrastructure) then you likely won’t be able to perform the actions
listed below. In this case it might be necessary for you to consider moving to a local boot. Please
contact markus.joos@cern.ch for more advice.

If you have a local boot with RPM driver installation, and are having problems configuring CMEM
to consistently allocate memory on boot please attempt the following:

1. Contact the FELIX team to confirm the required amount of memory for your setup. The typical
recommendation is 4 GB per FELIX card.

o

Depending on your setup and use case, it may be necessary to consider adding additional
RAM.

2. If necessary, amend the allocation by opening /etc/init.d/drivers_flx and changing
gfpbpa_size=to the new amount.

3. If this doesn’t help, try configuring systemd such that drivers_flx_sd.service runs as the first
service. This can be achieved as follows:

o

o

Run systemd-analyze plot drivers_flx_sd.service > p.svg; eog p.svg. You will see
something like what is shown in Figure 29.

Open the file /etc/systemd/system/drivers_flx_sd.service

Look for the [Unit]‘'section. Add the statement ‘BEFORE= at the end of the [Unit] section and
list all of the services that are in front of drivers_f1x_sd (see example below).

Reboot the computer and check systemd-analyze plot drivers_flx_sd.service > p.svg; eog
p.svg again. Keep adding services to the BEFORE= list until drivers_flx_sd is the first service,
as shown in Figure 30

Try multiple reboots and confirm that this results in stable allocation.

4. If this still does not resolve the issue please contact markus.joos@cern.ch for additional support.

Example modification of [Unit] block:

mailto:markus.joos@cern.ch
mailto:markus.joos@cern.ch

[Unit]

Description=Start the drivers required by a TDAC PC or SBC
DefaultDependencies=no

Before=kmod-static-nodes.service systemd-udevd-kernel.socket dev-hugepages.mount
dev-mqueue.mount nss-user-lookup.target machine.slice dm-event.socket user.slice
slices.target

0.0s i1.0s 2.0s 3.0s 4.0s 5.0= 6.0s

|kmod-static-nodes.service (33ms)
systemd-udevd-kernel.socket
-hugepages.mount (25ms)
-mqueue.mount (24ms)
-user-lookup.target
achine.slice

Figure 29. Example output of systemd-analyse.

[cmem systemdok output] | figures/cmem_systemdok_output.png

Figure 30. Example output of systemd-analyse with drivers_fIx first.

9.3. Guide for System Designers

* For GBT-mode transmission to FELIX, use 8b/10b encoding on the E-links. Avoid the non-
encoded fixed length or variable length formats, because no resynchronization is possible if bits
are lost or repeated on the E-link. Comma symbols are used to align to 10-bit symbols in the bit
stream. They are considered idles and can be inserted in the data stream anywhere. Transmit
"frequent” pairs of commas. This will minimize data loss when FELIX tries to resynchronize
when the symbol boundary is lost due to a missed or repeated bit on the E-link. The out-of-band
SoP (Start-of-Packet) and EoP (End-of-Packet) "K-Characters" are used to delimit packets in
8b/10b E-links.

* The E-link clock, input, and output data rates are independent. The only restriction is that
within a GBT E-link group, all the clocks must have the same frequency, all the data inputs the
same data rate and all the outputs the same data rate. However, groups can be setup
independently from each other. Read the GBTx manual carefully to understand the GBTx group
restrictions and bit order. Note, however, that a clock output is only available if its
corresponding Tx is enabled. This means, for example, that a bank running with 320 Mb/s E-
links can supply only two (identical) clocks, but they can be 40, 80, 160 or 320 MHz.

* E-link "chunks" or packets are even multiples of bytes or 8b/10b symbols. If an odd number of
bytes are received from the front end, FELIX will add an extra padding byte. In the to-front end
direction, the length must be an even number of bytes.

» Synchronization of 8b/10b encoding requires two consecutive comma characters.

* In 8b/10b encoded E-links, FELIX can be asked to assert BUSY by sending BUSY-ON and BUSY-
OFF symbols (i.e. out-of-band symbols that can be sent any time, even within data packets). This
should be done only in exceptional cases or at start of run. It should not be the normal mode of
protecting against buffer overflow. Instead, complex dead time should be defined to prevent
most buffer overflows.

* The event data sent to FELIX are not expected to be ATLAS-standard event fragments. FELIX just
transports the data to the Software ROD where detector specific software may transform the
data as required and format it into ATLAS-standard event fragments for the ATLAS Read out
system (ROS).

* The use of a CRC or the IP checksum is recommended to detect any transmission errors for E-
links run over cables.

* In addition to sending all events to the SW ROD, FELIX can send all, or a sample of, events to
other network end points for monitoring. Extra monitoring data may be included as packets
separate from event data packets in the E-link data stream by using FELIX’s stream IDs at the
start of the packet.

* Even if there is no hit data associated with a Level-1 Accept, it will still be necessary to send a
packet to the SW ROD that contains at least the L1ID and BCID. Without this is will be almost
impossible to properly recover from error conditions that may arise.

* DCS information may be included as packets separate from event data packets in an E-link data
stream by using FELIX’s stream IDs at the start of the packet.

* Any 80 Mb/s E-link can be used to connect to a GBT-SCA ASIC. The E-link clock must be
configured to use 40 MHz, i.e. the data is sent in DDR mode.

* The "EC" link can be used as an ordinary E-link at 80 Mb/s; its E-link clock may be either 40 or
80 MHz.

* TTC: FELIX can send TTC Level-1 Accept information on any E-link declared as a ‘TTC’ E-link.
‘TTC’ E-links can be 80, 160 or 320 Mb/s E-links, to transfer, respectively, 2, 4 or 8 TTC bits on
every BC clock. The contents of the TTC word is defined by the FELIX configuration and can be
chosen from the ten bits in Table 3. Note: In all three cases, the E-link clock can be 40 MHz, i.e.
the BC clock. The data is sent with FIXED latency.

Table 3. List of bits decoded from the TTC system that can be chosen to be sent on an E-link defined as a TTC
E-link.

Brest[7] Brest[6] Brest[5] Brest[4] Brest[3] Brest[2] ECR BCR B-chan L1A
* Network end-points, such as the SW ROD, can receive Level-1 Accept information (L1ID, BCID,

Trigger Type, etc.) by subscribing to the Level-1 Info (virtual) E-link (also known as the TTC-to-
host E-link). See Section 6.1.6.3.

9.4. FELIX Firmware Modules for Front-end Users

The FELIX team have produced a number of self-contained firmware modules which are intended
for integration into front-end firmware both for testing and production purposes. These make it
possible to test data transfer functionality from the output layer of the front-end firmware to FELIX
and beyond, before integrating more of the front-end logic. Modules exist for both GBT and FULL
mode use cases.

9.4.1. Downloading Firmware Source

A full description (including diagrams) of the modules discussed below, as well as the relevant

firmware source, is available on the FELIX project distribution site:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

The site contains multiple revisions, for compatibility with different FELIX firmware versions. GBT-

compatible packages are labeled 'ElinkInterfaceSources' and FULL mode-compatible packages are

labeled 'FullmodelnterfaceSources'. Please consult the documentation within the files for

compatibility information.

9.4.2. GBT Test Modules

From a GBT perspective the modules provided depend on whether the GBT implementation is in an
FPGA or with a GBTX chip. Common to both is a simple data generator module, which generates an
incrementing counter and can be attached to the input port of the GBT module to provide a basic
data source for link testing.

GBT-FPGA

For FPGA-based GBT a module will be provided to wrap and drive the GBT link in communication
with FELIX (in both directions). All modules will be fully compatible with the official GBT-FPGA
core[CERN_GBT core].

GBTx

For GBTx chips all that is needed is to connect the provided data generator to a chip e-port, thus
providing data on one E-link across the GBT.

9.4.3. FULL Mode Test Modules

Link Layer Tests

For FULL mode implementations the FELIX developers provide a link layer test package, making it
possible to verify functionality at transceiver level (e.g. clock jitter stability, cleaning and
configuration). Users should be able to integrate this into their front-end design for basic tests
before implementing higher level link protocols.

Protocol Tests

Once the link layer is verified, users can integrate the 'stream controller' module, also provided by
the FELIX developers, which manages the FULL mode link protocol and adds e.g. start and end of

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

packet markers. This is recommended for use not just in testing but also final implementation.
Alongside this module a simple data generator is also provided which can be used for testing data
transfer across the link.

9.4.4. E-link Wrapper

The E-link Wrapper is a standalone FPGA module that implements the E-link interface. It
instantiates the Elink2FIFO and FIFO2Elink components alongside a reset sequence logic. The
Elink2FIFO and FIFO2Elink contain FELIX’s Central Router modules, which manage the TX/RX
datarate (80, 160 or 320 Mbps) and the line code that is being used (8b10b or HDLC). These
components provide a simple FIFO interface to the user that can write the data-to-be-sent into the
FIFO2Elink buffer, and read the received data from the Elink2FIFO buffer. The wrapper can
therefore be used as an interface between an FPGA and FELIX, via a GBTx or a GBT-FPGA
instantiation [CERN GBT core], or as a means of communication between two FPGAs. More
information on how to use the component can be found on [elinkWrapper_ug]. The source files
themselves can be found in the repository which is included in the aforementioned user guide’s
References section.

9.5. External Software Resources and Tools

9.5.1. SCA eXtension — FPGA emulation of the SCA ASIC

A standard way to configure a front-end device is via the GBT Slow Control Adapter (GBT-SCA) ASIC
[ghtmainpage]. The SCA ASIC implements several interfaces to communicate with other on-board
devices, in order to configure them and monitor their status. The SCA eXtension (SCAX) FPGA
firmware module [scax_ug] [scax_proc] emulates the SCA’s communication protocol, in order to
transparently provide access via FELIX to the registers of the FPGA logic in which it is instantiated.
The use of SCAX enables DAQ and DCS to take advantage of the whole back-end OPC-UA software
ecosystem to access FPGA registers. (See Appendix E.) SCAX also supports reading and writing FPGA
memories and FIFOs. More information can be found in Appendix F.

9.5.2. IC-over-NetlIO

The GBTx ASIC can be configured via a dedicated E-link, the IC E-link, provided that a bi-directional
optical connection between that GBTx and FELIX exists. FELIX offers the ability to configure the
GBTx via the low-level fice command, which accepts a file containing the values of the entire GBTx
address space, and forwards them to the ASIC accordingly. The tool may also write values into
specific registers, or read the values from some of the GBTX' registers.

The IC-over-NetIO application [icOverNetio_repo] is based on fice’s logic, with the main difference
being that it allows the user to perform the same operations via the NetlO interface, i.e. while the
FELIX software is running, something that the fice application cannot do, being a low-level tool.

At the time of writing the application is in its testing phase, with some minor issues remaining to be
addressed.

Appendix A: Setting up a TTC System for use
with FELIX

This section is meant to help users of FELIX systems with the set-up of a TTC system. Both the new
ALTT and legacy TTCvx/TTCvi systems are described below.

A.1. The ALTI System

The ATLAS Local Trigger Interface (ALTI) is an upgrade to the former TTC system, and replaces the
functionality of the previous LTPi, LTP, TTCVi and TTCvx. The ALTI board provides functionalities
such as rate counters for all TTC signals, per-bcid counters, busy monitoring, a pattern generation,
and as monitoring/synchronization of input signals and programable phase shift of output signals.
For a full list of functionalities and detailed ALTI instructions please see:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTrigger ALTI

The forward signals are ones sent by the CTP to the sub-systems (BC, ORB, L1A, TTR, BGO, TTYP),
while the backward signals are sent by the subsystems to the CTP (BUSY, calibration). The front
panel of the ALTI also has six SFP connectors for -mode fibre optic transmitter/receiver modules.
The first five SFPs are used for dual-transmitters, while the last one can be used for TTC signal
monitoring.

To test the FELIX with the ALTI card, connect system as shown in Figure 31. The cable from the
LEMO connector of the FELIX timing card is plugged into the lower left connector labelled as BUSY
OUT. In the future, it will be possible to configure the BUSY connector on the ATLI for either a NIM
or TTL signal via software. Until this software feature is available in the ALTI, a NIM to TTL adapter
can be used since the FELIX sends a signal compatible with a TTL signal, while the ALTI accepts a
NIM signal by default.

To send TTC signals (L1A for example) from the ALTI to the FELIX, connect top SFP connector (using
a single LC connector), to the ST connector on the FELIX timing card as shown in Figure 31. An LC to
ST adapter will be needed for this.

The bottom SFP connector with the orange connections is connected in loopback mode for ALTI
debugging and can be ignored for the purposes of FELIX commissioning.

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI

Send TTC signal to FELIX

BUSY OUT——
to FELIX LEMO

connector
on timing card

Figure 31. Image of cabled ALTI

A.1.1. Software Setup

Once the hardware is setup log into the SBC hosting the crate and setup the TDAQ and ALTI
software either locally, in testbed, or at Point 1 following instructions at:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTrigger ALTI#Software

Once the TDAQ and ALTI environment is setup, configure the correct slot for the ALTI using the
command:

testAltiInitial -s 6 -B -b 0x07000000 -R -S -c

where -s 6 is the ALTI slot number, -B -b 0x07000000 is to change the base address to 0x07000000
and -R -S -c is to reset and check the ALTI board.

A.1.2. Sending TTC Signals with ALTI

First make sure the FELIX is set to TTC clock following instructions in Section 3.5.1 and Section 3.5.2.
After the software is setup you are ready to test sending L1A with the ATLI. You can use a
configuration located here to send the L1A from the ATLI:
/afs/cern.ch/atlas/project/tdaq/levell/ctp/11ct-08-03-05/ALTI/data/cfg_1MHz.dat.

The file sends Level-1 Accepts (L1A) at a 1 MHz rate. You can either copy the file locally or read it
directly from afs if you have access to it from your TTC crate. You can then start sending the L1A by

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Software

executing the command below from the SBC:

testAltilnitial -s 4 -R -S -C -f /afs/cern.ch/atlas/project/tdaq/levell/ctp/11ct-08-03-
05/ALTI/data/cfg_1MHz.dat

At this point the FELIX should forward the L1A to the front end, your front end should respond
accordingly and send data through the FELIX, which you can monitor with FELIXcore.

If one would like to stop/start the pattern sending you can follow the commands below from the
SBC, and selecting 7, followed by 3 (to enable L1A sending) or 4 (to disable L1A sending):

menuAltiModule

7 [PAT menu] Pattern generation memory"
" 3 enable pattern generation "
* 4 disable pattern generation"

If a different patter generation or a different frequency of pattern is required, it is possible to
configure one following instructions on

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Scripts_to_generate_of_
Pattern_G

A.1.3. Testing BUSY signal with ALTI

In order to test whether the ALTI is corresponding correctly to a BUSY from the FELIX, it is possible
to force a BUSY in the FELIX using the commands below on the FELIX server:

flx-config set TTC_DEC_CTRL_BUSY_OUTPUT_INHIBIT=0 -d 2

flx-config set TTC_DEC_CTRL_MASTER_BUSY=1 -d 2

To remove the BUSY execute the commands below on the FELIX card:
flx-config set TTC_DEC_CTRL_BUSY_OUTPUT_INHIBIT=0 -d 2

flxcard $./flx-config set TTC_DEC_CTRL_MASTER_BUSY=0 -d 2

The ALTI should respond to the FELIX BUSY by stopping to send the L1A (or other generated)
patterns. To test if the ALTI has stopped sending the patterns, the following can be executed on the
SBC hosting the ALTI:

menuAltiModule

And select 11 CNT menu counters, and then select 1 to read counters. If selecting 1 to read counters
several times does not make the counters go up, it means the ALTI has stopped sending the L1A (or
other pattern), and thus correctly responded to the FELIX BUSY signal.

A.2. The TTCvi/TTCvx (A)

Figure 32 shows the final cabling of TTCvi and TTCvx modules for a TTC setup with B-channel. The

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Scripts_to_generate_of_Pattern_G
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Scripts_to_generate_of_Pattern_G

A-channel carries the Level-1 Accept; the B-channel carries BCR and the other TTC commands. The
TTCvi-TTCvx pair should have already been tuned. If not, see Section A.2.1 below. Note: For a TTCex
this may look different. A list of all the materials you will require to set up a TTC system is
presented in Table 4.

Figure 32. Image of cabled TTC system with B-channel connections

Table 4. Materials needed to set up a TTC system

Item Source Remarks

VMEDbus crate

VMEDbus master

Can be rented from the CERN
Electronics Pool (but the Pool
may be out of stock)

TTCvx and TTCex can be rented
from the CERN Electronics Pool
(but the Pool may be out of
stock)

optical attenuator

Can be rented from the CERN
Electronics Pool

We recommend a SBC from
Concurrent Technologies
(ATLAS standard). Support can
be given for VP717, VP917 and
VP-E24 (64 bit, compatible with
TDAQ software release tdaq-05-
05-00 and above).

The TTCvi is no longer in
production. Make sure the VME
base address switches are set to
match your software.

The TTCvx/ex is no longer in
production. The TTCvx has a
LED driver, the TTCex has a
laser driver

Max length of the fibre: TTCvx:
20 m; TTCex: 100 m

Other crates may do as well

TTCvi VMEDbus card

TTCvx VMEDbus card or TTCex
VMEDbus card

3 LEMO cables (1 or 0.5 ns)

1 optical multi-mode (TTCvx) or
single-mode (TTCex) fiber with
ST connectors on both ends

TTCoc & ATLAS (not clear who
to ask; Maybe P. Farthouat) &
TTC fan-out; needed if you have
several FELIX

Needed only for use with a
TTCex without TTCoc. The
optical attenuator has to be a
single-mode attenuator of 3-20
dB and has to be connected
directly to the TTCex output.
The FTPDA-R155 should work
with a TTCvx without
attenuator. In case of a TTCex
an attenuator of 3 dB is
recommended for the FTPDA-
R155. The FTPDA-R155 has a
sensitivity of -31 dBm and
saturates at +1 dBm.

If you need to tune the TTCvi-TTCvx pair, you need in addition:

2 LEMO cables (5-10 ns)

2 LEMO Y-adapters
* 2 LEMO-BNC adapters

2 50 Ohm terminators (Only required if your oscilloscope has no internal termination.)

A.2.1. Tuning a TTC system

If your TTCvi-TTCvx pair has not been tuned, follow the instructions in this section. Cable the TTC
system as shown in Figure 33. Note: for a TTCex this may look different. For more information
please consult the section "Tuning procedure 2" of the TTCvi manual (http://www.cern.ch/TTC/
TTCviSpec.pdf).

http://www.cern.ch/TTC/TTCviSpec.pdf
http://www.cern.ch/TTC/TTCviSpec.pdf

Ignore this module

=== To oscilloscope

Figure 33. Image of cabling for tuning a TTC system

Note: The question has come up if channel A and channel B are correctly cabled in the picture
above. Here is a reply from the TTC expert (Sophie Baron):

A "good" configuration when channel B is not used is indeed to have it tied to "1". And it is right that
having Channel B connected to OUTPUT B gives a static "1" on channel B. However, the termination
scheme at the TTCex inputs keeps as well unconnected channel inputs (both B and A) to "1" by
default (it is negative ECL logic, and the Vin is at -2.08V by default). Therefore, both schemes could
be used identically. One additional remark: of course, if you leave both A and B unconnected at the
input of the TTCex, you will have both channels A and B to "1", and this is not good as the TTCrx
needs to see two different behaviours on A and B to be able to differentiate them (the rule is that
the A-channel must not have more than 11 consecutive "1" whereas B can have any type of

sequence).

This description can be broken down into the following points:

* Connect the TTCvi A/ecl CHANNEL OUT output to the TTCvx A/ecl CHANNEL IN input via a Y-
adapter.

BC delay set to
position 5

LEDs:
BC-EXT and A-
CH on

Figure 34. Image of cabling for tuning a TTC system

* Connect, via a Y-adapter, one of the TTCvx CLOCK OUT/ecl outputs to the TTCvi CLOCK IN
bc/ecl input. Check that the BC_EXT indicator is lit on the TTCvi as shown below. The TTCvx
internal clock may be used.

* Set the TTCvi trigger mode (= 5) to random at the highest rate (100 kHz) and disable the
event/orbit/trigger-type transfers. In order to do this write 0x7005 to the D16 VMEbus CSR1
register at offset 0x80. This can be done easily for vme_rcc_test. Note: The A24 base address of
the TTCvi in the CERN reference system in TBED is 0x555500. This should light up the TTCvi A-
Ch yellow indicator and the A/ecl CHANNEL OUT output should now carry 25 ns long trigger
pulses.

* With an oscilloscope look at the TTCvx Channel-A input in respect to the clock output, as shown
below.

Tek JL. Trig"d M Pos: 30.40ns CH2

Coupling

B Lirnit

Off
200MHz

Yolts/Div

A ﬂ N —
J WY -

CH2 200mY M 10.0ns
4-Apr-16 14:45

CHI (vellow): Channel in
CH2 (blue): Clock out

Figure 35. Image of cabling for tuning a TTC system

* Adjust the TTCvi BC delay switch such that the rising edges of the Channel-A pulses occur within
4 ns before to 2 ns after the rising edges of the clock signal.

 Setting the delay switch in position 2 and using 1 ns long interconnecting cables for the clock
and the A and B channels corresponds to the above mentioned timing criteria. Note from
Markus Joos: Even though I used 1 ns cables, I had to set the switch to position 5 (see picture
above) in order to meet the requirement of step 5.

A.2.2. Guide to TTC Channel B

The following section describes the structure of the TTC 'B channel' data stream, and how it may be
decoded and operated by users. The information in this section is provided courtesy of Alessandra
Camplani and the LAr group.

The data stream arriving through TTC B channel can be of two types: short broadcast commands or
long individually-addressed commands/data.

Short broadcast commands are used to deliver messages to all TTC destinations in the system, while
long individually-addressed commands/data are used to transmit user-defined data and
instructions over the network to specific addresses and sub-addresses. These two types of
command have different dedicated frame formats, as shown in Figure 36:

; IDLE | START [FMT | DATA | cHek | sTop

BROADCAST COMMANDS/DATA
[0[0] 8b CMD/DATA | 5b CHCK [1]

INDIVIDUALLY-ADDRESSED COMMANDS/DATA

[0[1] 14bTTCrx ADDR [E[1] 8b SUBADDR | 8bDATA [7bCHCK [{]

Figure 36. Image of cabling for tuning a TTC system

The difference between the two command types can be illustrated with the example below. When
not in use the B channel IDLE state is set to 1. When a sequence of commands is sent, the data
transmission state changes from 1 to 0. After the first zero received it is possible to distinguish
between short broadcast and long address commands: if the second bit in the stream is a 0 then the
command is a short broadcast, if it is a 1 then the command is of long address type.

IDLE=111111111111
Short Broadcast, 15 bits:
@0TTDDDDEBHHHHH:
T= test command, 2 bits
D= Command/Data, 4 bits
E= Event Counter Reset, 1 bit
B= Bunch Counter Reset, 1 bit
H= Hamming Code, 5 bits
Long Addressed, 41 bits
071AAAAAAAAAAAAAAETSSSSSSSSDDDDDDDDHHHHHHH :
A= TTCrx address, 14 bits

E= internal(@)/External(1), 1 bit
S= SubAddress, 8 bits
D= Data, 8 bits

H= Hamming Code, 7 bits

The short broadcast command type is used to send two important values: the Bunch Counter Reset
(BCR) and the Event Counter Reset (ECR).

The BCR is used to reset the bunch crossing counter, which is increased every clock cycle on the 40
MHz clock. This is a 12-bit counter, also called BCID. A BCR command is sent roughly every 89 us,
corresponding to the time that a bunch needs to do an entire circuit of the LHC. During this time the
BCID counter reach its maximum value, 3564 counts.

The ECR is used to increase the event reset counter. The periodicity of this reset is decided by each
experiment, with ATLAS having it set to 5 seconds. The event reset counter combined with the L1A
counter gives the Extended L1ID (EVID). This is a 32-bit value consisting the L1A counter in the
lower 24 bits, and the event reset counter in the upper 8. Every time that an ECR is received the
upper counter is increased by 1 and the lower part is reset to zero. Every time that a L1A is received
the lower part is increased by 1.

BCID and EVID values are used as a label for the data accepted by the trigger.

The long address command type is used to transport another important value: the Trigger Type
(TType). Each L1A transmission is followed, with variable latency, by an 8-bit TType word. This
word is generated inside the LVL1 Central Trigger Processor (CTP) and distributed from the CTP to
the TTCvi modules for each of the TTC zones in the experiment via the corresponding LTP modules.

The presence of a Trigger Type within long address commands is announced by a sub-address (8
bits) set to 0.

Table 5. Trigger type 8-bit word: Each bit represent the sub-detector which fired the trigger or the data type.

Sub- physics ALFA FTK LAr Muons Calorimet ZeroBias Random

Trigger demonstr er
ator
Bit 7 6 5 4 3 2 1 0

As shown in Table 5, each bit has a specific role. In calibration mode, bits 0 to 2 can be used to
distinguish between up to eight different possible types of calibration trigger within each sub-
detector. Bits 3 to 6 are used to indicate which sub-detector or subsystem fired the trigger. Bit 7
represents physics trigger-mode when set to 1, and calibration mode when set to 0.

A.2.3. B channel decoding firmware

An effort is under way to provide a centrally maintained firmware module to decode TTC B-channel
data. In the short term, users are advised to refer to a version produced for LAr front-ends by
Alessandra Camplani. The module code can be found in gitlab:

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc

The code itself is in the folder code_ttc and the files dedicated to TType decoding are:
Bchan_top.vhd, SMdecoding cnt.vhd and TType_decoding. The simulations for this specific part can
be found in the simulation folder. Here there is a testbench for the Bchan_top entity and another
one for TType_decoding entity.

Development of this module is ongoing, with the latome_ttc branch being actively maintained and
kept up-to-date.

A.2.4. Channel B decoding software

In order to test channel decoding, it is recommended that users employ the menuRCDTtcvi
application, provided as part of the ATLAS TDAQ software release. Within the application select
'BGO menu' and then option 13 'send asynchronous command'. From here it should be possible to
select either a short of long command. In the case of a short command simply enter the data word
to be sent. For a long command enter an address 0 (for broadcast), 0 for internal registers,
subaddress 0 for trigger type, and the data word to be sent.

A.2.5. Useful documents
You may find additional useful information in this document from the ATLAS LAr group:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/
CPPM_MIiniFELIX_tests_results_and_TTC_system_experience.pdf

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf

Appendix B: BNL-712 Technical Information

This appendix will collect technical information for the BNL-712 board.

B.1. Overall Design

The FELIX card hosts 4 MiniPOD transmitters and 4 MiniPOD receivers. Each MiniPOD has 12
channels. The TTC clock from the ADN2814 is cleaned by an Si5345 or LMKO03200. The clean 240
MHz is used as a reference clock for the GTH transceivers. Two of the PCle hardcore EndPoints
within the FPGA are used, with the PEX8732 PCle switch used to connect them to a 16-lane slot.

An on-board 2 Gb FLASH memory can store 4 different firmware bit files. An on-board
microcontroller (which the host can communicate with either via SMBus or through the FPGA and
PCle interface) can be used to select one of the four FLASH memory partitions and trigger FPGA
programming from the image stored in the selected partition.

As shown in Figure 37 and Figure 38, the FPGA has two Super Logic Regions (SLRs), referred to as
devices in the software. To balance resource usage and 54 minimize the number of traces crossing
the boundary each SLR has one 8-lane PCle endpoint. For the 24-ch GBT firmware flavor, banks 126-
128 and 131-133 are used.

CTX TOPSIR BOTSIR _, RX

\ C J 7A

- RX \7 X

] " C HP Bank 53 A

- "RX HP Bank 73 X
- D B

- —

s - TX RX
e D B

Figure 37. 24ch configuration.

TX TOPSIR BOTSIR RX

-~ C A

"RX I_ X

(] ’ L C | HP Bank 53 A

kL — W HP Bank 73 TX
2L D — | B
o TX | RX
& — D B

Figure 38. 48ch configuration.

B.2. Fibre Mapping and Connectivity

Every FLX-712 comes with PRIZM patches pre-installed, connecting the MTP inputs to the
MiniPODs. These patches are custom made for the card and mean that the users should only need
to connect to their data source to the MTP cable. No internal cabling work on the FLX-712 is
required. The Fibre mapping and pin assignment for channels in each MiniPODs are shown
described in this section. Two configurations are shown: 48 channel and 24 channel.

B.2.1. 24 Channel Version

For 24 channel version, the channel number is 12 for each MTP coupler. Figure 39 / Figure 40 show
how the banks are connected to the MiniPODs in this case.

RXA12 | RXA11 | RXA10 | RXA9 RXA8 RXA7 RXA6 RXAS5 RXA4 RXA3 RXA2 RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXAS TXA4 TXA3 TXA2 TXA1

RXC12 | RXC11 | RXC10 | RXC9 RXC8 RXC7 RXC6 RXC5 RXC4 RXC3 RXC2 RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1

Figure 39. 24ch fibre mapping.

RXA12 | RXA11 | RXA10 | RXA9 RXA8 RXA7 RXA6 RXA5 RXA4 RXA3 RXA2 RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXAS5 TXA4 TXA3 TXA2 TXA1

#1

RXC12 | RXC11 | RXC10 | RXC9 RXC8 RXC7 RXC6 RXC5 RXC4 RXC3 RXC2 RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1
Koy

Figure 40. 24ch fibre mapping looking from MTP coupler.

B.2.2. 48 Channel Version

For 48 channel version, there are 24-TX and 24-RX in fibre connected to each MTP coupler. Figure
41 [Figure 42 show how the banks are connected to the MiniPODs in this case.

Key
RXA12 | RXA11 | RXA10 | RXA9 | RXA8 | RXA7 | RXA6 | RXA5 | RXA4 | RXA3 | RXA2 | RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXA5 TXA4 TXA3 TXA2 TXA1

RXB12 | RXB11 | RXB10 | RXB9 RXB8 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1

TXB12 | TXB11 | TXB10 | TXB9 TXB8 TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1

Key
RXC12 | RXC11 | RXC10 | RXC9 | RXC8 | RXC7 | RXC6 | RXC5 | RXC4 | RXC3 | RXC2 | RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1

RXD12 | RXD11 | RXD10 | RXD9 RXD8 RXD7 RXD6 RXD5 RXD4 RXD3 RXD2 RXD1

TXD12 | TXD11 | TXD10 | TXD9 TXD8 TXD7 TXD6 TXD5 TXD4 TXD3 TXD2 TXD1

Figure 41. 48ch fiber mappping.

RXA12 | RXA11 | RXA10 | RXA9 RXA8 RXA7 RXA6 RXA5 RXA4 RXA3 RXA2 RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXA5 TXA4 TXA3 TXA2 TXA1

RXB12 | RXB11 | RXB10 | RXB9 RXB8 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1

TXB12 | TXB11 | TXB10 | TXB9 | TXB8 | TXB7 | TXB6 | TXB5 | TXB4 | TXB3 | TXB2 | TXB1
T ,5=)Y) 7

RXC12 | RXC11 | RXC10 | RXC9 RXC8 RXC7 RXC6 RXC5 RXC4 RXC3 RXC2 RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1

RXD12 | RXD11 | RXD10 | RXD9 RXD8 RXD7 RXD6 RXD5 RXD4 RXD3 RXD2 RXD1

TXD12 | TXD11 | TXD10 | TXD9 TXD8 TXD7 TXD6 TXD5 TXD4 TXD3 TXD2 TXD1

Koy

Figure 42. 48ch fibre mapping looking from MTP coupler.

Appendix C: BNL-711 Technical Information

This appendix will collect technical information for the BNL-711 board which may be relevant to
user test stand installations.

The BNL-711 hosts a Xilinx® Kintex® UltraScale FPGA on a board capable of supporting 48 high
speed optical links via MiniPOD transceivers, with a 16-lane PCIe Gen 3.0 interface. On-board clock
jitter cleaning and TTC circuitry mean that no mezzanine attachment is required to connect with
ATLAS clock and control systems. An image of the BNL-711 and its key features are presented
below. While the board is still in use in a number of test stands, it is recommended that subdetector
teams adopt the BNL-712 for any new developments.

JTAG Connector . SO-DIMM Sockets
MiniPOD Sockets (x8) (Not used for FELIX)

ST Connector &

(TTC)
(Not fitted in
diagram)
12 V Power
(Not compatible
I(-:Iciyl::.?ector with Xilinx Power

Connector)

m Kintex UltraScale XCKU115 FPGA
PCle x16 Gen 3

Figure 43. The BNL-711 V1.5 board.

C.1. User Jumper Map and Functional Specification

The BNL-711 provides a number of I/O connectivity options. These are can be selected by modifying
the position of the user jumpers shown by the red boxes in Figure 43. A specific map of the relative
position and name of each jumper is presented in Figure 44. A detailed description of the function
of each jumper, and to which board configuration options it relates, is available in the sections
below.

1 2
J1 3| 4
516
JMP2 | 2
3
J8
4

Figure 44. BNL-711 V1.5 User Jumper Map

C.1.1.J1

For uC configuration with 6-pin ISP programmer.

JMPR2| 1
JMP1
JMPR1| 1
J2 JMP3
2 |1 2

1 MISO

2 VTG-SYS25
3 SCK

4 MOSI

5 RSTn

6 GND
C.1.2.]J2
PRSNT selection.

1 PRSNT_FP

GA
2 PRSNT
3 PRSNT1

2 & 3 are connected.

C.1.3.]8

Backup I12C/SMB connector.

1
2

SYS33
PCIE_SCL

3 GND
4 PCIE_SDA

C.1.4. JMP1

Connect FPGA_PROG_B to the uC_FPGA_PROG_B (PC5). Connected by default.

1 uC_FPGA_P
ROG_B
2 FPGA_PRO
G_B
C.1.5. J]MP2

Connect FPGA_INIT_B to the uC_FPGA_INIT_B (PD2). Connected by default.

1 uC_FPGA_I
NIT B

2 FPGA_INIT
B

C.1.6. JMP3

WAKE_N from PClIe to FPGA. NOT connected by default.

1 PCIE_WAK
E_N

2 PCIE_WAK
E_N_FPGA

C.1.7. JMPR1 & JMPR2

JMPR1: FLASH_A2S5 selection.

1 GND

2 uc_FLASH_
A25

3 SYS25

JMPR2: FLASH_A26 selection.

1 GND

2 uc_FLASH
A26

3 SYS25

The FPGA firmware has the highest priority to set FLASH_A25 and FLASH_A26. The Jumpers have
lowest priority.

If uC is used, when uC_FLASH_A is '1', the FLASH A will be '0'; when uC_FLASH_A is '0', the
FLASH_A will be '1'.

If Jumpers are used, when it is connected '1', the FLASH_A will be '0'; when it is connected '0', the
FLASH_A will be '1".

As default, the first Flash partition can be used, then 2 & 3 are connected.

C.2. MiniPOD Connectivity Map

The BNL-711 hosts 4 MiniPOD Tx/Rx Transceiver pairs, located in two banks either side of the FPGA,
as shown in Figure 43. The transceiver sockets have a specific logical order, presented in Figure 45.
Users should connect their optics according to this map to ensure the correct link order is
preserved.

824 Rx 824 Rx

Pair4 =< — Pair 2
814 Tx 814 Tx
824 Rx 824 Rx

Pair3 — = Pairl
814 Tx 814 Tx

Figure 45. BNL-711 MiniPOD Connectivity Map.

Appendix D: Guide to FELIX Data Structures

* Data buffered in the FPGA per E-link or per FULL mode link and transferred under DMA control
* Fixed block size of 1 kB

» The blocks are transferred into a contiguous area, functioning as a circular buffer, in the main
memory of the PC.

* The DMA runs continuously, thereby eliminating DMA setup overheads and achieving high
throughput (about 12 GB/s for the 16-lane interface of the FLX-711).

» Event fragments or other types of data arriving via the FE links are referred to as "chunks" and
can have an arbitrary size.

1 kB blocks of E-links or FULL mode links are multiplexed into a single stream.

» Block header: (32 bits) * Fragment trailer (16 bits)
= ElinkID ® Fragment type
I = Block sequence I » First, last, both, middle, null
= Start of block symbol = Flags
® Error, truncation, timeout, CRC error
= Fragment length
10 bits

1 kB block 1 kB block 1 kB block 1 kB block

-~

-

chunk chunk

-
r

-

" E-link packet = chunk (may span multiple blocks)

)
=
=

=
-~

Figure 46. FELIX block structure

V15 1-May-20

From FPGA to Host

Block header

Block header as uint32_t (u_long) read from memao
|31‘sulza‘zs‘zilzﬁ‘zs‘za‘zs‘zzlm‘zu‘ 19|13‘17|15‘15|14|13‘12‘ 11|1u‘ 9| B‘ 7| 5| 5‘ 4| 3‘ 2| 1| u‘
OxABCD (OxABCE for the 32-bit trailer format)

Data is transferred
as 1 kByte blocks |
with this block header

Sequence number | GBT E-group ‘ E-path ‘

Block header as u_char (bytes) read from memory
[lefslelsfaafef [#]e]sfafefa]efe] [7]e]se[s]2f[sfo] [7e[s]e]sfaz]0]
| GBT-Iowl E-group E-path ‘ ‘ Sequence number ‘ GBT-high | | 0xCD ‘ OxAB ‘

Block header as vint16_t (u_short) read from memory
|15‘14|13‘12‘11|10‘9‘8‘7‘s|5‘4‘alz‘llo‘ |15|14‘13‘12|n‘m|9‘B|7|6‘5|4‘3|2|1‘0|
| Sequence number GBT E-group | E-path | O0xAB

0xCD

Sub-chunk trailer (16-bit trailer)
Sub-chunk trailer read as uint16_t (u_short) from memory

slu[B[[ufw][e[s[7]s]s][4]3]2]1]e]
Payloads of the blocks Type T ‘ E | C ‘ Sub-chunk length in bytes on a 16-bit boundary,
are organized as chunks 0| 0| 0|« signalsfill pattern caused by timeout, all other bits are also 0 if the number of bytes is odd,
that may extend over 0| 0| 1|« first part of chunk consisting of more than one part a padding byte is added
several blocks. Each 0| 1| 0| last part of chunk consisting of more than ene part at the end
chunk has a trailer, ol 1 1|4 chunk consisting of one part
if it extends over more 1| 0| 0|¢ notfirst and not last part of chunk consisting of more than one part
than one block then 1| 0O 1|¢ E-linktimeout
each part of the chunk 1 1| 0|« reserved
("sub-chunk") has 1| 1| 1|« out-of-band

its own trailer T: Truncation flag, 1 if chunk was truncated
E: Error flag, 1 if an error occurred

C: CRC20 Error in FULL mode, reserved in GBT mode

Qut-of-band trailer (implemented in Full mode only)

|15 14|13‘12‘u|1o‘9‘a‘7‘ 5| 5‘4‘ 3|2‘1|c‘
Out of band trailers start i1 1 0 0 0 O O 0 1 0 1 1 1 0 O
with "111", but the other
fields are defined here,
the fields T, E, C and
length are undefined.

(0xEOSC) Indicates that the frontend is in busy state for the given Full mede link

JumboBlock' Sub-chunk trailer (32-bit trailer)
Sub-chunk trailer read as uint32_t (32-bit word) from memo

y
31‘SD|29 ZS‘27|26‘25‘24‘23‘22|21‘20‘1Q|18‘17|15‘15|14|lS‘lZ‘l‘lllD‘9|B‘7|G|5‘4|3‘2|1|D‘

(text next to 'Sub-chunk Type T ‘ E | C ‘ B ‘ reserved (9 bits) Sub-chunk length in bytes ‘
trailer' applies) 0| 0| 0|¢ signals fill pattern caused by timeout, all other bits are also 0

ol o 1|« first part of chunk consisting of more than one part

0| 1| 0|« last part of chunk consisting of more than one part

0| 1| 1|« chunkconsisting of one part

1| 0| 0|4 notfirstand not last part of chunk consisting of more than two parts

1| 0| 1|« E-linktimeout

1| 1| 0|« reserved

1| 1| 1|« out-of-band

: Truncation flag, 1 if chunk was truncated

: Error flag, 1 if an error occurred

: CRC20 Error (FULL mode) Reserved in GBT mode
: Busy state indication (1 means FE is busy)

@ Oom -

Default emulator chunk payload
Internal chunk header as u_char (bytes) read from memory

byte 0 byte 1 byte 2 byte
Internalheaderofchunk | 7 [6 [s [a[3] 2] 1[o] [#7][e][s[a]s]2]aJo] [7[e]s[a]s]2]aJo] [7]e[s[a]a]a]a]o]
payload as loaded in | OxAA ‘ ‘ length (msh) | | length (Isb) ‘ counter ('L11D") ‘
emulator memory in .bit msb: most significant bits
files. This payload can be byte 4 te 5 yte 6 byte 7 Isb: least significant bits
replaced by the [FlelsTealal=[sfe] [z]ef=Te]aTa2]0o] [7]el=]e[az[afo] [a]efs]e[a2]1]0]
elinkconfig program | 0 ‘ 0 | E-group | E-path ‘ ‘ 0xBB | | OxAA ‘ E-link width (2, 4, 8 or 16) ‘

TTC: TTC-to-Host packet

Words as u_long (32-bit) read from memory

Proposal for TTC sis0| 29|27 2] 2]|n|w][w|[w|[v[w][s|[w][s][e][u]w]as]e][7]s[s[a[3]2]1]c

information ("TTCtoHost") reserved ‘ BCID length (26, or 20) ‘ Format version (FMT) Word 0
output via dedicated extended L1ID ‘ L1ID Word 1
E-link as chunk payload, orbit Word 2
Phase-ll compatible, reserved trigger type Word 3
FMT=0x1: 20-byte format LOID (currently equal to L1ID + extended L1ID) Word 4
Full: indication of overflow L1A counter (32 LSBs) ‘Wnrd 5

in TTCtoHost fifo, before ‘ Full | ‘Wnrd 6

truncation is issued

L1A counter (15 MSBs)

Words read as u_long (32-bit word) read from memo
| 31 ‘ 3U| 29‘ ZS‘ 27| 26‘ 25‘ 24 ‘ 23‘ 22| 21‘ ZU‘ 19| 18‘ l?l 16 ‘ 15| 14| 13‘ 12‘ 1'1| 1U‘ 9 | 8 ‘ 7 | 6 | 5 ‘ 4 | 3 ‘ 2 | 1 | 0 ‘
length (8) BCID

Proposal for TTC
information for testing,

reserved

| Format version

emulated using

emulator memory [31]s0[20]as] 7] 2s[as[2a]2s[22] 1|20 19|18 17[16| s[e][s[2[muf0]a[s[7[s][s]a]3]2]1]a]

| extended L1ID | L1ID |
From Host to FPGA
Data is transferred | 15‘ 14| 13‘ 12‘ 1l| 10‘ 9 ‘ 8 ‘ 7 ‘ 6 | 5 ‘ 4 ‘ 3 | 2 ‘ 1 | 0 ‘
as 32 byte [GBT EGroup | Epath | length [eom

messages with a 2-byte

header and a 30-byte
payload

Figure 47. List of FELIX Data Structures

eom: 1 if last part of message
length: count of 2 byte words

Table 6 is a table version of E-links that produce a 26-byte L1AInfo data packet containing

information about each Level-1 Accept.

Table 6. The TTC Level-1 Accept information 26-byte data packet sent to the host system, shown here as
seven 32-bit words. Byte address space is from right to left, i.e. the words are little-endian.

3 2 2
1 4 3
< Byte 3 = < Byte 2 =
reserved BCID
XL1ID
reserved

D U b W N =, O

11 8 7 0
6 5
< Byte 1 = < Byte 0 =
Length (26 bytes) FMT (2)
L1ID
orbit
Trigger Type
LOID

L1A Counter[31..0]

L1A Counter[47.32]

The contents of the packet can be described by a C/C++ struct type as a number of bitfields as shown
below. Such a 'TTC-to-host' packet in memory can be cast directly to this type:

typedef struct {
unsigned int format
unsigned int length
unsigned int bcid
unsigned int reservedd
union{

unsigned int full_117id :

struct {
unsigned int 11id

unsigned int x11id :

I
b
unsigned int orbit
unsigned int trigger_type
unsigned int reservedl
unsigned int 10id
unsigned long 171a_counter

1 32;
: 16;
: 16;
: 32;
1 48;

} __attribute__((packed)) TtcToHost_packet_t;

Appendix E: Guide to Using FELIX with the
GBT-SCA

This appendix is included thanks to Paris Moschovakos and the DCS team.

E.1. Introduction

The Slow Control Adapter ASIC (GBT-SCA, or SCA for short) is part of the GBT chip-set and is
dedicated to the slow control of the front-end boards. It features several sub-devices that facilitate
both front-end configuration and monitoring of environmental variables (voltages, temperatures,
etc.) on and around the detector. The SCA contains an ADC, DACs, general purpose 10, and
controllers for 12C, SPI and JTAG. An SCA is connected to a GBTX via any 2-bit E-link in 40 MHz DDR
mode (80Mb/s) with HDLC encoding. Up to 41 SCAs can be potentially connected to a single GBTX
with the corresponding link on FELIX configured accordingly.

From/To FELIX
I E-links on GBT-frame
H IC EC EC FEC
GBTx Gorirol Fath Data Path - .
Abits Zhits Zbits B0bits 3Zbits

up to 40

40MHz DDR
80 Mbps

SCA

SCA

Figure 48. GBT frame paths and E-links.

E.2. Typical test setup

A typical test setup consists of a board with a GBTX that is connected to FELIX via an optical fibre
and to an SCA via one of the GBTX’s E-links.

The Versatile Link Demo Board (VLDB) (https://espace.cern.ch/GBT-Project/VLDB/default.aspx)
contains both a GBTX and an SCA. It can be directly connected to a FELIX card. (The VLDB demo
board can be procured from the GBT group). A schematic of such a setup is shown in Figure 49.

https://espace.cern.ch/GBT-Project/VLDB/default.aspx

FELIX host
n

'Y

optical fibre

PCle

—p VIRTEX -7

Figure 49. Evaluation setup with a GBT-SCA on a VLDB. SCA and GBTX are interconnected on the VLDB
externally via a pair of mini-HDMI connectors (J32 (PRIMARY) and J33 (SCA PORT), in that case using the
GBT EC E-link).

To simplify the evaluation of the setup, the VLDB possesses two LEDs connected to two general-
purpose digital outputs of the SCA. This can be used to quickly validate visually the communication
path and functionality all the way from the FELIX host to the SCA itself. In order to do that, the 'fec’
tool, of the ftools family as mentioned in Section 6, can be used.

The following command instructs the SCA connected to the VLDB with the GBT link
<gbt_link_number> EC link, to blink one of its LEDs 50 times at a rate of 5Hz (-t 100: 100ms on,
100ms off; last character is an 'o' for 'output’; -x selects the digital output: on the VLDB there’s an
LED on 18 and one on 21):

fec -G <gbt_link_number> -r 50 -t 100 -x 18 o

E.3. Procedure to set up an E-link to a GBT-SCA

A configuration procedure is needed both for FELIX and the GBTX itself. The configuration is mostly
a description of the setup at hand and the mapping of the e-links that are connected. There are also
some setup specific parameters to be configured.

In the case the SCA is connected to the dedicated EC E-link, one should check that this E-link is
enabled using the elinkconfig GUI. That specific E-link is pre-configured with the appropriate HDLC
SCA encoding and corresponding bit endianness and can be used directly for an SCA. Figure 50
shows an elinkconfig screenshot with the enabled EC channel in both the to-host and from-host
direction, indicated by the checked tick boxes with yellow background labeled 'EC'; the
hexadecimal number in brackets is the FELIX E-link ID associated with this E-link. Note that we
happen to have selected GBT link #2, which is also reflected in the hexadecimal numbers next to the
various E-link 'enable’ tickboxes.

In the case that one wants to use an E-link from one of the GBT E-groups instead of or in addition to
the EC E-link, one has to configure FELIX accordingly via elinkconfig. The SCA uses HDLC encoding
instead of the typical 8b/10b which is the default for the data E-links, so this needs to be configured
for the E-link. Moreover, the bit orientation is different from the normal' data E-links. By selecting
the HDLC format in the drop-down menu, elinkconfig takes care both of the orientation and the
encoding, indicating that an SCA is connected to that specific GBT group and path. As an example,
Figure 50 shows that the 8th 2-bit E-link of E-group 0 of GBT link 2 has been enabled in the FELIX
configuration in both the to-host and from-host direction. The FELIX E-link ID is shown here to have
a value of 0x087. Using ftools tool felink one can confirm this is indeed the requested E-link:

> felink -e 87
E-link 087 = GBT #2 group #0@ path #7, bit#14 width=2

E% FELIX E-link Configurator @ agogna - [m] >
FLX-device: 01(712, GBT) - Read Cfg || TH_FanOut...| FH_FanOut...| | Timeout... Clock... Stream IDs Advanced
File: Open... Save...
Link |2 Z| = GBT FULLmode | Replicate.. Repl 2 All Use link 'EMU' to configure Emulator E-links Generate/Uplead...
| | TTC-to-Host (63b) Truncation (per link): ¥ HDLC
Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4 Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
2-bit ~ || 2-bit ~ | 2-bit ~ | 2-bit <~ | 2-bit ~ v EC (bf) 2-bit =~ | 2-bit ~ | 2-bit ~ | 2-bit ~ | 2-bit ~ v EC (bf)
V| 087 osf 097 o9f 0a7 HDLC b V| 087 osf 097 oof 0a7 HDLC b
HDLC ~ - - - - b HDLC ~ - - - - b
Epath 7 Epath 7 Epath 7 Epath 7 Epath 7 (=) Epath 7 Epath 7 Epath 7 Epath 7 Epath 7 IC (be)
086 08e 096 09%e Da6 086 08e 096 0%e 0ab
Epath & Epath & Epath & Epath & Epath & Epath & Epath & Epath & Epath & Epath &
085 oad 095 09d 0a5 085 08d 095 09d 0a5
Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5
084 08c 094 09¢c Oa4d 084 08c 094 09¢c 0ad
Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4
083 08b 093 09b 0a3 083 08b 093 09b 0a3
Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3
082 08a 092 09a 0a2 Egroup 0 082 08a 092 09a 0a2 Egroup 0
. Egroup 1 Egroup 1
Epath 2 Epath 2 Epath 2 Epath 2 Epath 2 Egroup 2 Epath 2 Epath 2 Epath 2 Epath 2 Epath 2 Egroup 2
Egroup 3 Egroup 3
081 089 091 099 Oal 081 089 091 099 Dal
Egroup 4 Egroup 4
Epath 1 Epath 1 Epath 1 Epath 1 Epath 1 Replicate.. Epath 1 Epath 1 Epath 1 Epath 1 Epath 1 Replicate..
080 088 090 098 0a0 EepliZill 080 088 090 098 0a0 Bepjall
= = = = = Disable = = = = = Disable
Epath 0 Epath 0 Epath 0 Epath 0 Epath 0 Enable Epath 0 Epath 0 Epath 0 Epath 0 Epath 0 Enable
ToHost Link 2 FromHost Link 2
FEL| X v4.1.0 9un-2020 (tag: test-00-00-02-2-goaefcba-dirty) Quit

Figure 50. Enabling E-links connected to GBT-SCAs.

E.4. Low level operations with the fec tool

The fec tool, is a dedicated tool from the ftools suite of tools to demo the handling of a number of
I/0 channels available on the SCA. Please check the full list of possible operations in Section 6.

E.5. A Software Suite for the Radiation Tolerant GBT-
SCA - The Production system

The on-detector DCS system that handles the slow control traffic and the configuration of the front-
end electronics, based on the GBT-SCA. The global scheme is presented in the following figure.

Hardware Interface Middleware Solution Clients

(UaExpert, etc.)

SCA Software Library

SCADA Clients
(WinCC OA, etc.)

optical Ua
1 » links () .
7} S Configuration
E-links netiO (C/ /e Vi) lient
[[e X /e
28
s
e— © | Peripheral Servers
SCAOPCUA 7 w | ere
server E
SCA E-link Evaluation PCB gﬂ Diagnostic Clients

A
_/

fwSca

SCA Simulator

function
calls

SCA Software Demonstrators

Figure 51. Global picture of the software suite. The SCA Software package, in light blue, comprises the SCA
Software API to communicate with the SCA via different back-ends, the SCA Simulator to emulate SCA
traffic for testing and development, and the Demonstrator tools which are used for standalone operations.
The SCA OPC UA server and its ecosystem, in orange, is the middleware of choice to exchange data with the
front-ends. UaoClientForScaOpcUal is a library that clients use to communicate with the SCA server. Finally,
the fwSca module automatizes the integration of the server data into SCADA systems.

The slow control and configuration traffic, unlike physics data, has different requirements in terms
of throughput, latency, availability and reliability. SCA DCS is the software that handles the SCA
traffic arriving on the FELIX card. Towards the FELIX clients it is based on the middleware Open
Platform Communications Unified Architecture (OPC UA, of the OPC foundation,
(https://opcfoundation.org) which is an industry standard for secure and reliable exchange of data
in industrial automation and other controls-related areas.

The server/client architecture that the platform uses, allows for different purpose clients to be
served by a single server per FELIX host. The data flow to/from the ATLAS control room, not only
serves the control and monitoring data of the detectors' conditions but also implements the
configuration path of the on-detectors electronics and their initialization for data taking or
calibration. In addition, system experts can monitor the status of the employed technology and get
statistics and other information in order to diagnose the various system layers.

All those requirements potentially imply many different OPC UA clients that would like to receive
SCA data from the setup at the same time. The chosen OPC UA architecture ensures the reliable and
seamless data delivery and the compatible integration into the current DCS systems. This means
that OPC UA clients in both DCS and a detector configuration server can communicate with the
same SCA and the OPC UA server arbitrates their access.

E.5.1. OpcUaSca server

The provided OPC UA server implementation for the SCA is based on the ScaSoftware (explained
below) intending to profit from all features of the ScaSoftware library and providing a high-level
and user-friendly OPC UA address space to OPC UA clients.

https://opcfoundation.org

OPC UA'SCA

The OpcUaSca server has been designed and implemented using the quasar framework (see
https://github.com/quasar-team/quasar). Its design is presented in the following figure.

Meta ScaSupervisor 12cMaster
DigitallOSystem versionString : UaString numberOffline : UInt16 diagnostics . Uatring
diagnostics : UaString masterld : Byte
1,nc o Q 1,nc busSpeed : UIntl6
DigitallO @ sclPadCmosOutput : Boolean
0..32 3
value : Boolean 0..1 0..* 0.16 T 1..1024
isinput : Boolean -
ar Byte SCA 12cSlave
numberOffline : UInt16 value : UaByteString
online : Boolean masterld : Ulntlé
0..1 id : UInt32 numberOfBytes : Byte
numberRequests : UInt64 addressingMode : Byte
numberReplies : UInt64
1.8 I lastReplySecondsAgo : Ulnt64
idConstraint : UaString _
SpiSIave supervised : Boolean 0.* DacSystem Q
recoveryActionScaStayedPowered : UaString | 1 0..32
write : UaByteString recoveryActionScaWasRepowered : UaString
busSpeed - UInt32 managementFromAddressSpace : UaString
transmissionSize : Byte reset() - void DacOutput
slaveld : Byte ing() - Boolean
sclkidleHigh : Boolean ping = voltage : Double
sampleAtFallingRxEdge : Boolean 1/ 0..1 id : UaString
sampleAtFallingTxEdge : Boolean
IsbToMsb : Boolean AnaloginputSystem
autoSsMode : Boolean
generalRefreshRate : Double 0.1
diagnostics : UaString
ya XilinxFpga
Analoglnput idcodeNumeric : UInt32
idcodeString : UaString
value : Float jtagClockMhz : UIntl6
id : Byte
program(UaByteString) : void
getConsecutiveSamples : Float []

Figure 52. The quasar design diagram of the OPC UA server for the SCA.

As of May 2020, the server supports the following functionality:

Communication with any number of SCAs, through NetIO or any other HDLC backend. Each SCA
is identified in its address-space by a name, and its unique 24-bit "SCA identifier" which is
written by the chip manufacturer in the SCA silicon. The identifier is read using the ScaSoftware
library when a connection to given SCA is opened.

Up to 32 ADC channels per SCA which are polled with the configured conversion frequency.
Note that channel 32 has no external connection; it is connected to the on-chip temperature
sensor that monitors the SCA temperature.

Up to 32 General Purpose I/0 pins per SCA. Each pin can be configured as an input or output
through the server config file.

Up to 4 DACs per SCA; the DACs take the desired voltage as a float (0..1V).

Up to 8 SPI slaves per SCA. The SPI configuration (like speed, phase, mode . . .) can be
configured in the server config file.

Up to 16 independent configurable I2C master controllers
Up to 1024 12C slaves per 12C master controller
A single Xilinx FPGA over JTAG interface

https://github.com/quasar-team/quasar

E.5.2. ScaSoftware Package

In the SCA Software package core there is a library that is structured in modules that implement the
required functionality in various layers. The library was designed to be flexible and easily
adaptable to the diverse systems intended to use it by its polymorphic HDLC back-end. A block
diagram of the software architecture of this library is shown in Figure 53

Moreover, the SCA Software package contains the Demonstrators which are tools that directly use
the library and are used for testing and for low level diagnostics. Finally, as part of the package, an
SCA Simulator was developed that is able to generate SCA traffic, simulating realistic SCA
behaviour, in order to allow for development and testing without real hardware.

SCA Software

ADC || SPI || 12C | GPIO || JTAG || DAC

Synchronous Service

HDLC Backend

SCA

Simulator netlQ UsB

Figure 53. SCA Software Library stack.

» The library is a modular piece of software supporting SCA chips no matter how it is physically
connected to the host system. Therefore the core part of the library operates on protocol data
units of the SCA chip, which normally would be encapsulated in the HDLC protocol. There are a
number of predefined "HDLC backends" which are services to send such encapsulated SCA
requests and receive replies.

» The library scales from the simplest use cases up to scenarios of thousands of SCAs.

* The library is able to profit from concurrency features of the host system, including multi-core
and multi-threaded operation.

* The library is written in a chosen version of the standard C++ dialect.
* The library is designed with reliability and robustness as a key design choice because it would

serve critical, 24/7 communication.

The out-of-the-box ScaSoftware, as of May 2020, includes among its backends the NetIO backend
which enables seamless communication with the FELIX software ecosystem, and particularly with
the felixcore application which can route the traffic between an application based on ScaSoftware
and any SCA connected through fibers to chosen FELIX machine.

Being backend-agnostic, the addressing scheme shown in Table 7 has been chosen for the library to
identify a given SCA in case of NetIO.

Table 7. Addressing scheme

Backend type Discovery variant

NetIO FELIX mapper not used

netio-next FelixMapper

E.6. SCA References

SCA address to use

simple-
netio://direct/hostname/portTx/
portRx/elinkTx/elinkRx

Where:

1. Hostname is a hostname of

the FELIX machine where
felixcore runs.

. PortTx is the TCP/IP port on

which FELIX will receive
and transport further
through fibers to the SCA.
Typically it is 12340.

. PortRx is the TCP/IP port on

which FELIX will distribute
the replies of the SCA chip.
Typically it is 12350.

. elinkTx is a two-digit

hexadecimal E-link
identifier on which
OpcUaSca will transmit data
towards the SCA. For
example, 3F would mean
the EC link of the first fibre
of the FLX card. You can use
'felink' tool to compute the
E-link identifier. Note that
neither decimal format nor
prefix/suffix are supported
(e.g. it’s illegal to put 0x3f
instead of 3F).

. elinkRx is a two-digit

hexadecimal E-link
identifier on which
OpcUaSca will receive data
from the SCA.

Prototype definition as of May
2020.

1. P. Moschovakos, P. P. Nikiel, et al.,, "A Software Suite for the Radiation Tolerant Giga-bit

Transceiver - Slow Control Adapter"”, presented at the 17th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
WEPHA102.

2. OpcUaSca repository, https://gitlab.cern.ch/atlas-dcs-opcua-servers/ScaOpcUa
3. ScaSoftware repository, https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware

4. Uao Client for OpcUaSca, https://gitlab.cern.ch/atlas-dcs-opcua-servers/UaoClientForOpcUaSca

https://gitlab.cern.ch/atlas-dcs-opcua-servers/ScaOpcUa
https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware
https://gitlab.cern.ch/atlas-dcs-opcua-servers/UaoClientForOpcUaSca

Appendix F: Guide to Using FELIX with the
SCA eXtension

The Slow Control Adapter eXtension (SCAX) is an FPGA module that emulates the GBT-SCA’s
communication with the back-end (i.e. FELIX and the OPC UA server) in order to provide access to
registers in the FPGA. The OPC-UA server uses the protocol for the SCA’s 12C interface. SCAX’s
connection to the registers is, however, parallel and not I12C.

F.1. Introduction

The SCA ASIC is typically installed on front-end boards in order to configure and monitor other
front-end devices (usually other ASICs) on the board. Being radiation-tolerant, it can be deployed on
front-end boards that are subject to high radiation doses. However, there may be several parts of
the DAQ system that are FPGA-based, and are either situated in parts of the detector which are not
exposed to a disruptive particle flux, or are even outside the experimental cavern, in the counting
room (or USA15).

The New Small Wheel (NSW) DAQ system for instance, uses the SCA to configure and monitor six
other front-end ASICs. The NSW electronics includes also FPGAs deployed on the rim of the wheel
(i.e. Pad Trigger) and in USA15 (NSW Trigger Processor). The board of the latter FPGA-based system,
does not feature an SCA, but like the ASICs, its parameters must be tuned and its status monitored.
Even though the SCA is not present in the Trigger Processor, it was desirable to include it in a
unified configuration and status monitoring scheme.

The solution came in the form of the SCAX, which makes use of the FPGA’s direct interface with
FELIX (via optical fiber and by deploying the GBT-FPGA [CERN_GBT core] in its logic) , to
communicate with the OPC UA server (see Appendix E). The SCAX’s logic, has been designed in such
as a way as to be completely transparent to the OPC server, which was initially designed to
interface only with the SCA. By emulating the command-response protocol dictated by the SCA’s
specifications, the SCAX can establish a connection with a server as an SCA FELIX, and use the
server’s features to access the registers of the FPGA in which it is implemented; this is being
achieved by mimicing the SCA’s 12C device and to write into and read from the FPGA fabric
registers. Full access to registers in the FPGA, using the already existing and well-established OPC
software ecosystem is thus provided. The general scheme can be examined in Figure 54. SCAX has
been deployed successfully in the NSW Trigger Processor FPGA, but it can be used by any FPGA
device that features a direct connection with FELIX.

FPGA

GBT-FPGA Optical Link Network

Transceiver
4.8Gbps

Y
=
SCA le Front-End

FPGA Board Device

» FELIX

A

Optical Link +
Serial E-link
(via GBTx)

Figure 54. Connectivity of the SCA and the SCAX with the OPC Server.

F.2. Establishing a Connection between the SCAX and
FELIX

This Appendix will focus on the procedure it must be followed by the user of the SCAX to connect
the instance of the logic with FELIX. The reader may refer to [scax_ug] for a detailed user guide on
how to deploy the SCAX in an FPGA, and to [scax _proc] for a detailed write-up of the module’s
architecture.

If a proper configuration is found, then going through all the steps mentioned below will not be
necessary, but it is strongly recommended to follow them after the first attempt to establish a
connection between all nodes.

Note also that it is not needed to connect the SCAX with any of the user logic registers when going
through the connectivity validation procedure.

F.2.1. General Steps

In principle, the user must follow the procedure below to establish a system that allows access to
the registers of their FPGA logic using the SCAX < — FELIX < — OPC Server arrangement:
1. Deploy the SCAX in their FPGA netlist

2. Connect the SCAX either with a GBT-FPGA instantiation, or with a GBTX device, either of which
must feature a direct optical bidirectional connection with FELIX

. Configure FELIX accordingly

3

4. Validate the SCAX’s RX path
5. Validate the SCAX’s TX path
6

. Connect the OPC UA server with the SCAX instance in question

In the following subsections, each step will be addressed in more detail.

1. Deploying the SCAX in a pre-existing FPGA design

The procedure that must be followed by the user/designer to deploy the SCAX into their firmware is
covered in greater detail at the associated user guide [scax_ug]. However, some recommendations
will be mentioned in this subsection.

First of all, the clocking scheme must be chosen carefully, in order to avoid data corruption on both
directions of the communication. For a GBT-FPGA-driven implementation, the SCAX’s E-link clocks
(40, 80, 160 and 320 MHz) must be related with the transceiver’s reference clock. For a GBTx-driven
use-case, the SCAX’s E-link clocks must be derived from the E-link clock, as delivered by the GBTX to
the user FPGA.

Also, for the first implementation iterations where the user is attempting to establish a connection
with FELIX, the following pins must be tied to a Xilinx Virtual Input/Output (VIO) IP core: rx_swap,
tx_swap, dbg_fifo_rd, and ena_fIx_test.

Finally, it is strongly recommended to set the SCAX in 8b10b, 80 Mbps, and in debug mode via the

associated generics.

2. Connecting the SCAX to a GBT-FPGA or a GBTx
There are two use-cases that must be studied; they are depicted in Figure 55.

Front-End Back-End

1
1
1
FPGA :
1
scAX e GBTx 21— FELIX OPC
of:,;ial: Network [Server
A vV '
User 1
Logic :
FPGA
< 8 O OPC
SCAX O |lg >
> E-u' Olljliri‘ial FELIX Nelwork
iV |5
User ©
Logic

Figure 55. Two possible ways to connect the SCAX with the OPC Server.

In the case of connecting the SCAX with the FELIX/OPC Server via a GBT-FPGA, the user should
connect the parallel ports of the SCAX (e.g. rx/ tx_elink2bit) with the 84-bit TX/RX bus of the GBT-
FPGA instance. Depending on the bits of the bus that are chosen, the SCAX will belong to a different
E-link. If the recommended SCAX interfacing configuration is chosen (i.e. 8b10b 80 Mbps), then the
user should use the 2-bit TX/RX ports of the SCAX (2-bit is for 80 Mbps, 4-bit is for 160 Mbps etc.),
and connect it to Egroup0 or Egroupl of FELIX. Egroup0 EPATHO corresponds to bits [1:0] of the
GBT-FPGA’s TX/RX bus. Egroup0 EPATH1 corresponds to bits [2:3] of the bus. Egroupl EPATHO
corresponds to bits [16:17] of the bus, etc. If the same part of the bus is chosen for both directions,
then SCAX will reside on the same E-link for both the To-Host and the From-Host paths, which eases
the procedure.

In the case of connecting the SCAX with the FELIX/OPC Server via a GBTX, the user should connect
the serial ports of the SCAX (i.e. rx/ tx_elink) with the desired GBTx pins. Testing so far has shown
that by choosing a low data rate (i.e. 8b10b 80 Mbps), the communication of the SCAX with FELIX
via the GBTx is easier, as it is probably not needed to train the GBTx on the datastream coming from
the SCAX (see the GBTXx manual [GBTx] for more details on how to perform training on the GBTx
ports). If a faster data rate has to be chosen due to system restrictions, it is recommended to
perform training on the GBTX bank that the SCAX’s TX path corresponds to, in order to avoid data
corruption on that direction. Finally, the user must deduce the E-link ID to which the SCAX
corresponds, by going through the PCB’s schematic and taking note to which GBTx package pins the
SCAX’s serial I/0Os are connected.

Note that different Egroups of FELIX support specific protocols and data rates for semi-static builds.

3. Configuring FELIX Prior to Connectivity Testing

If the To-Host (SCAX-TX) and From-Host (SCAX-RX) E-links to which the SCAX corresponds are

known, then these must be activated on the FELIX side via the elinkconfig tool, as per the data rate
and protocol to which the SCAX is configured via its generics. felixcore must be running throughout
the connectivity testing.

4. Validating the SCAX’s RX Path

In order to validate the SCAX’s RX path (or From-Host direction, in FELIX jargon), then after
configuring the FELIX E-links accordingly, the embedded SCAX’s ILA must be used to probe the RX
path. The ILA is activated if the SCAX is deployed in debug mode, as recommended for the first
implementation attempt.

There are two ports that must be examined: these are the din_dbg and drdy_dbg. The 10-bit din_dbg
bus yields the decoded data originating from the FELIX E-link. In the case of 8b10b encoding at
80Mbps, pairs of standard commas, K28.5, must appear periodically on the bus. This is the Oxbc
byte, accompanied by "11" in the first two bits of the bus. Hence, if the communication is sound, the
0x3bc word will appear every five cycles, and the drdy_dbg will go high for the cycle the word
appears. If any of these is not true, then the user should check if the optical link is aligned via the §
fix-info GBT command in FELIX, then check if the E-link configuration on the FELIX side is correct.
If these appear to be OK, then the user should either attempt to probe the aforementioned ILA ports
after attempting a different rx_swap state, or after attemtping a different fereverse configuration on
the FELIX side.

5. Validating the SCAX’s TX Path

In order to validate the SCAX’s TX path (or To-Host direction, in FELIX jargon), then after
configuring the FELIX E-links accordingly, the VIO connected to the SCAX’s critical ports must be
used to send a test packet to FELIX. First of all, the user should have felixcore running in FELIX, and
netio_cat subscribed to the To-Host E-link of the SCAX, in order to ensure the test packet is indeed
being received by FELIX. Then, the user should toggle the VIO’s port ena_fIx_test from low to high
and then back to low (note that it must be kept low when not used). By doing this, the SCAX sends
the following message to FELIX: Oxff 0x63 Oxe5 Ox5e. If the message is reported by netio_cat, then
the communication on that direction has been established. If not, then the user should check if the
optical link is aligned via the $ fIx-info GBT command in FELIX, then check if the E-link
configuration on the FELIX side is correct. If these appear to be OK, then the user should attempt to
send the message again after attempting a different rx_swap state, or after attempting a different
fereverse configuration on the FELIX side. If a GBTX is used in the communication chain, then
training the GBTx should also be considered.

6. Connecting the OPC Server

If both TX/RX paths are validated, then the user should attempt to connect the OPC server with the
SCAX. Note that it is advised to check the system’s state by trying to connect the server with already
existing SCA’s, prior to any SCAX connection attempts. If the server and FELIX seem to be working
as they should, then the SCAX instance can be added to the OPC’s configuration .xml. Choosing the
correct E-link as a parameter in the .xml is crucial.

If the OPC server can connect to the SCAX (There is no reason not to, if Steps 4 and 5 have been
validated by the user.), then the user may implement the SCAX again, in non-debug mode and by
removing the VIO (note that the rx_swap and tx_swap values that work must be retained). If the

SCAX still connects, as it should, then the user may proceed with interfacing the SCAX with the rest
of their logic, as per the SCAX user guide. Note that if a GBTX is used, it is recommended that the
user always train the GBTx after configuring their FPGA.

If the server fails to connect, then Steps 4 and 5 should be revisited. Note that testing so far has
shown that if the OPC server fails to connect, felixcore must be restarted prior to another
connection attempt.

Appendix G: External emulators

Dedicated firmwares allow to turn a FELIX card into a data generator for testing and performance
assessment purposes. A FELIX in such configuration is called external emulator, where the
adjective external is meant to avoid confusion with the internal emulator present in the GBT and
FULL mode firmware flavours. Two kinds of external emulators exist: FELIG for the GBT mode, and
FMEmu for FULL mode. Instructions on how to operate FELIG and FMEmu are listed in the
following.

G.1. FELIG

The FELIG firmware is available for the FLX-712 card (previously only the HTG-710). Full details are
available in the dedicated user manual on CDS:

https://cds.cern.ch/record/2752360/

G.2. FMEmu

The FMEmu firmware is available for the FLX-712 and FLX-711 card models. It can be loaded on a
48-channel card but it will use 24 channels only. The FMEmu can be connected to a FELIX via a
patch panel or using MTP-24 loopback fibres (in the latter case FELIX and FMEmu have to be hosted
on FLX cards with the same number of channels). The FMemu can be set to receive the clock from
the TTC system as a long as the TTC ST fibre is connected to it. The FMEmu can send data
continuously or in triggered mode (upon reception of a L1A from FELIX). The FMEmu supports the
XOFF traffic control system.

G.2.1. Quick start guide

Instructions on how to setup a FMEmu+FELIX system are listed in the following. Commands have to
be entered in both the FELIX and FMEmu hosts. To distinguish between the two hosts the
commands are preceded by the labels [FELIX] and [FMEmu]. Comments that are not commands are
written within parenthesis.

Felix configuration: On elinkconfig enable all the desired ToHost links. In addition for each GBT
link, enable the following FromHost e-links:

» Egroup 0, Epath 0 (2-bit wide, 000), 8b10b encoding (for the XOFF)
* Egroup 1, Epath 1 (8-bit wide, 009), TTC-3 encoding (8-bit wide, for the TTC)

Alignment procedure:

https://cds.cern.ch/record/2752360/

[FELIX] (configure clock selection and links with elinkconfig)

[FMEmu] flx-config set MMCM_MAIN_LCLK_SEL=0x@ (0x@ is TTC clock | @x1 for local clock)
[FELIX] flx-init

[FMEmu] flx-init

[FELIX] flx-reset GTH

[FELIX] flx-info gbt (check for alignment)

[FMEmu] flx-info gbt (if not aligned use flx-reset GTH, then go back to previous step)

Once the links are aligned the FMEmu can be started in either continuous mode or triggered mode.
In the latter case the L1A received by FELIX from a TTC system are forwarded to the FMEmu.

Continuous mode:

#[FMEmu]

#Stop emulator, a rising edge on the register is required to apply settings
flx-config set FMEMU_CONTROL_EMU_START=0x0

#Number of triggers, @xFFFF is unlimited

flx-config set FMEMU_COUNTERS_L1A_CNT=0xFFFF

#1 for L1A triggered mode, @ for self triggered mode

flx-config set FMEMU_CONTROL_TTC_MODE=0x0

flx-config set FMEMU_CONTROL_EMU_START=0x1

flx-config set FMEMU_CONTROL_ECR=0x1

flx-config set FMEMU_CONTROL_ECR=0x0

Triggered mode with optional XOFF:

#[FELIX]

if you want to enable XOFF, else skip
flx-config set XOFF_ENABLE=@xffffff

#[FMEmu]

flx-config set FMEMU_CONTROL_EMU_START=0x0
#Number of triggers, OxFFFF is unlimited
flx-config set FMEMU_COUNTERS_L1A_CNT=@xFFFF
#if you want to enable XOFF, else skip
flx-config set FMEMU_CONTROL_XONXOFF=0x1

#1 for L1A triggered mode, @ for self triggered mode
flx-config set FMEMU_CONTROL_TTC_MODE=0x1
flx-config set FMEMU_CONTROL_EMU_START=0x1
flx-config set FMEMU_CONTROL_ECR=0x1
flx-config set FMEMU_CONTROL_ECR=0x0

G.2.2. FMEmu data format and payload

Each FMEmu message consists of a 32-bit field containing the extended L1ID, followed by an
incremental sequence of bytes. The payload size can be set to constant using

flx-config set FMEMU_RANDOM_CONTROL_SELECT_RANDOM=0x@
flx-config set FMEMU_COUNTERS_WORD_CNT=<value>

Otherwise, the payload size is randomly drawn from a distribution. The payload size distribution
can be generated with a script such as fragsizegen and loaded onto the FMEmu with

femuran <file.coe>

The FMEmu is capable of generating chunks of size up to 4-5 kB at 100 kHz.

https://gitlab.cern.ch/cgottard/fragsizegen

References

= [1] CERN, GBT & Versatile Link, url: https://ep-ese.web.cern.ch/content/gbt-versatile-link.

= [2] F. Vasey et al.,, The Versatile Link common project: feasibility report, Journal of
Instrumentation 7.01 (2012) C01075, url: http://stacks.iop.org/1748-0221/7/1=01/a=C01075.

= [3] CERN GBT Project, The GBTx Manual, V0.14 (2016), url: https://espace.cern.ch/GBT-Project/
GBTX/Manuals/ghtxManual.pdf.

= [4] GBT Module for the FELIX Project, url: https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/
FELIX_GBT_MANUAL.pdf.

= [5] ATLAS Felix Group, Specifications for the FELIX FULL mode link, url: https://atlas-project-
felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf.

= [6] Xilinx, Xilinx VC709 Development Kit, url: http://www.xilinx.com/products/boards-and-kits/
dk-v7-vc709-g.html.

= [7] ATLAS FELIX Group, BNL-711 v2 Manual, url: https://atlas-project-felix.web.cern.ch/atlas-
project-felix/user/docs/BNL-711_V2P0_manual.pdf.

= [8] Supermicro, Supermicro X10SRA-F Motherboard Model Specification, 2016, url:
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm.

= [9] CERN TTC FMC project, url: http://www.ohwr.org/projects/optical-cdr-fmc/wiki.
= [10] TTC group, CERN TTC homepage, url: http://ttc.web.cern.ch/TTC.

= [11] Analog Devices Inc., ADN2814: Continuous Rate 10Mb/s to 675Mb/s Clock and Data Recovery
IC with Integrated Limiting Amp, url: http://www.analog.com/static/imported-files/data_sheets/
ADN2814.pdf.

= [12] Silicon Labs Inc., Si5345/44/42 Rev D Data Sheet - 10-Channel, Any-Frequency, Any-Output
Jitter Attenuator/ Clock Multiplier, url: http://www.silabs.com/SupportDocuments/
TechnicalDocs/Si5345-44-42-D-DataSheet.pdf.

= [13] Silicon Labs Inc., Si5324 Data Sheet - Any-Frequency, Any-Output Precision Clock Multiplier
/ Jitter Attenuator, url: https://www.silabs.com/documents/public/data-sheets/Si5324.pdf.

= [14] Xilinx, Xilinx Vivado Design Suite, 2016, url: https://www.xilinx.com/products/design-tools/
vivado.html.

= [15] Linear Technology, LTC2991 Data Sheet - Octal I12C Voltage, Current, and Temperature
Monitor, url: http://cds.linear.com/docs/en/datasheet/2991ff.pdf.

= [16] The Versatile Link Developers, The Versatile Link Common Project, 2008, url:
https://espace.cern.ch/project-versatile-link/public/default.aspx.

= [17] CERN GBT-FPGA project, url: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx.

= [18] E-link Wrapper Deployment User Guide, url: https://espace.cern.ch/ATLAS-NSW-ELX/
Shared%20Documents/Overview%20and%20General/elink_wrapper_userGuide.pdf.

= [19] SCA eXtension User Guide, url: https://espace.cern.ch/ATLAS-NSW-ELX/
Shared%20Documents/NSW%20Trigger%20Processor/scax_userGuide.pdf.

= [20] SCA eXtension: a Design for FPGA Parameter Configuration within the ATLAS DAQ Scheme -
IEEE/NSS Proceeding, url: https://ieeexplore.ieee.org/document/9059894.

https://ep-ese.web.cern.ch/content/gbt-versatile-link
http://stacks.iop.org/1748-0221/7/i=01/a=C01075
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm
http://www.ohwr.org/projects/optical-cdr-fmc/wiki
http://ttc.web.cern.ch/TTC
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
https://www.silabs.com/documents/public/data-sheets/Si5324.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://cds.linear.com/docs/en/datasheet/2991ff.pdf
https://espace.cern.ch/project-versatile-link/public/default.aspx
https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/Overview%20and%20General/elink_wrapper_userGuide.pdf
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/Overview%20and%20General/elink_wrapper_userGuide.pdf
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/NSW%20Trigger%20Processor/scax_userGuide.pdf
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/NSW%20Trigger%20Processor/scax_userGuide.pdf
https://ieeexplore.ieee.org/document/9059894

= [21] IC-over-NetIO Gitlab Repository, url: https://gitlab.cern.ch/chakalis/ic-over-netio

https://gitlab.cern.ch/cbakalis/ic-over-netio

	FELIX User Manual
	Table of Contents
	Chapter 1. Welcome to the FELIX User Manual
	1.1. Overview
	1.2. Document Compatibility

	Chapter 2. Introduction to FELIX
	2.1. FELIX Variants and Functionality
	2.1.1. Gigabit Transceiver (GBT) and the Versatile Link
	2.1.2. FULL Mode
	2.1.3. Propagation of ATLAS TTC Information

	Chapter 3. Hardware Requirements and Setup
	3.1. Recommended Hardware Platforms
	3.1.1. FPGA I/O Hardware: VC-709 (Commodity Platform)
	3.1.2. FPGA I/O Hardware: Custom Platforms
	BNL-712

	3.1.3. FELIX Host Systems
	3.1.4. Network Configuration

	3.2. Installation of VC-709
	3.3. Installation of BNL-711 and BNL-712
	3.4. Connecting to an existing TTC system
	3.4.1. VC-709 Only: TTCfx v3 Overview and Installation
	3.4.2. Connecting TTC and BUSY

	3.5. Configuring FELIX Clock
	3.5.1. Clock Source Selection
	3.5.2. TTC Clock Recovery: ADN2814
	3.5.3. Clock Jitter Cleaning

	3.6. Connecting and Initialising Optical Links
	3.6.1. Physical Link Layer Status: VC-709
	3.6.2. Physical Link Layer Status: BNL-711/712
	3.6.3. Logical Link Layer Initialisation

	Chapter 4. Firmware Releases and Programming
	4.1. Firmware Distribution Protocol
	4.1.1. Release Announcements and Distribution
	4.1.2. Supported Link Protocols & Encoding

	4.2. Firmware Programming
	4.2.1. JTAG Connectivity
	4.2.2. Setting up the Vivado™ Suite
	4.2.3. Programming the FPGA Directly
	4.2.4. Programming the FLASH ROM (VC-709)
	4.2.5. Programming the FLASH ROM (BNL-711/712)
	4.2.6. Enabling new FPGA Configuration
	PCIe hotplug procedure

	Chapter 5. Software Distribution and Installation
	5.1. Software Distribution Protocol
	5.1.1. Pre-requisites
	5.1.2. Release Announcements and Distribution
	FELIX Driver
	FELIX Software Suite

	5.2. Software Installation Instructions
	5.2.1. Driver RPM Installation Instructions
	DKMS
	Removal of Existing Driver Installations
	Installation of New Driver

	5.2.2. Installation of FELIX Software Suite
	5.2.3. Installation of FELIX rpm
	5.2.4. Installation of FELIX in CVMFS

	Chapter 6. Basic Tools
	6.1. E-link Configuration with elinkconfig
	6.1.1. Global Panel
	Data Path Fan Out Selectors: TH_FanOut and FH_FanOut
	Data Timeout Control Dialog
	Clock Source Selection Dialog

	6.1.2. ToHost Panel
	6.1.3. FromHost Panel
	6.1.4. Link and Data Generator Configuration Upload Dialog
	6.1.5. Guide to Valid E-link Configurations
	Semi-Static Firmware E-link Configuration

	6.1.6. Guide to common configuration tasks
	Working with E-link configurations stored in files
	Modifying the existing E-link configuration on a FELIX card without a file
	Configure the to-host Level-1 Accept info E-link (TTC E-link)
	Configure the to-front end TTC E-links
	Configure GBT-SCA E-links to/from host
	IC channel

	6.2. Low Level Tools
	6.2.1. flx-info
	6.2.2. fcap
	6.2.3. flx-config
	6.2.4. flx-init
	6.2.5. flx-reset
	6.2.6. felix-cmem-free

	6.3. Dataflow from/to Front-end via FELIX to/from FELIX host PC
	6.3.1. fdaq(m)
	Running a DAQ Test with External Data Source
	Running a DAQ Test with Internal Data Generation

	6.3.2. fupload

	6.4. FELIX Configuration Tools
	6.4.1. felink
	Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

	6.4.2. fereverse
	6.4.3. fgpolarity
	6.4.4. feconf
	6.4.5. femu
	6.4.6. fttcemu
	6.4.7. fttcbusy
	6.4.8. feto
	6.4.9. fflash
	6.4.10. fflashprog

	6.5. General Debugging Tools
	6.5.1. fcheck
	6.5.2. fedump

	6.6. Remote Hardware Command and Configuration Tools
	6.6.1. fice
	6.6.2. fgbtxconf

	6.7. Tools for GBT-SCA device access
	6.7.1. fec
	6.7.2. fscaid
	6.7.3. fscaio
	6.7.4. fscaadc
	6.7.5. fscadac
	6.7.6. fscai2c
	6.7.7. fscads24
	6.7.8. fscajtag
	6.7.9. fxvcserver

	Chapter 7. Felixcore Application and NetIO
	7.1. Operational Principles
	7.2. Configuration
	7.3. Monitoring
	7.3.1. FelixCore Native Monitoring

	7.4. FelixCore Examples
	7.4.1. Tests without an FLX Card
	7.4.2. Tests with an FLX Card

	7.5. Connecting to a felixcore instance using NetIO tools
	7.6. Connecting to a felixcore instance using FATCAT
	7.7. Discovering E-links with the FELIX BUS system
	7.8. Debugging
	7.8.1. Using the FelixCore event tracing framework

	Chapter 8. Felix-star Application and NetIO-next
	8.1. Introduction
	8.2. Architecture
	8.3. Felix Star commands
	8.3.1. felix-star
	8.3.2. felix-tohost
	8.3.3. felix-toflx
	8.3.4. felix-busy-tohost
	8.3.5. felix-busy-toflx
	8.3.6. felix-fifo2elink
	8.3.7. felix-dir2bus
	8.3.8. felix-elink2file
	8.3.9. felix-file2host
	8.3.10. felix-display-stats
	8.3.11. felix-get-config-value
	8.3.12. felix-get-ip
	8.3.13. felix-get-mode
	8.3.14. felix-fid

	8.4. Startup and Configuration
	8.5. Monitoring
	8.6. Discovering E-links with the FELIX BUS system
	8.7. Subscribing to streams
	8.8. Quick start and testing procedures
	8.8.1. Check connectivity and data transmission (no felix-bus)
	8.8.2. Check connectivity and data transmission (incl. felix-bus)

	8.9. The felix-client-interface

	Chapter 9. FAQ, Troubleshooting and User Resources
	9.1. Frequently Asked Questions
	9.2. Troubleshooting
	9.2.1. Known Issues with GBTx
	9.2.2. IOMMU
	9.2.3. File Descriptor (FD) Limit
	9.2.4. Debugging Link Status
	9.2.5. SMBus Access
	9.2.6. Problems with CMEM allocation on boot

	9.3. Guide for System Designers
	9.4. FELIX Firmware Modules for Front-end Users
	9.4.1. Downloading Firmware Source
	9.4.2. GBT Test Modules
	GBT-FPGA
	GBTx

	9.4.3. FULL Mode Test Modules
	Link Layer Tests
	Protocol Tests

	9.4.4. E-link Wrapper

	9.5. External Software Resources and Tools
	9.5.1. SCA eXtension — FPGA emulation of the SCA ASIC
	9.5.2. IC-over-NetIO

	Appendix A: Setting up a TTC System for use with FELIX
	A.1. The ALTI System
	A.1.1. Software Setup
	A.1.2. Sending TTC Signals with ALTI
	A.1.3. Testing BUSY signal with ALTI

	A.2. The TTCvi/TTCvx (A)
	A.2.1. Tuning a TTC system
	A.2.2. Guide to TTC Channel B
	A.2.3. B channel decoding firmware
	A.2.4. Channel B decoding software
	A.2.5. Useful documents

	Appendix B: BNL-712 Technical Information
	B.1. Overall Design
	B.2. Fibre Mapping and Connectivity
	B.2.1. 24 Channel Version
	B.2.2. 48 Channel Version

	Appendix C: BNL-711 Technical Information
	C.1. User Jumper Map and Functional Specification
	C.1.1. J1
	C.1.2. J2
	C.1.3. J8
	C.1.4. JMP1
	C.1.5. JMP2
	C.1.6. JMP3
	C.1.7. JMPR1 & JMPR2

	C.2. MiniPOD Connectivity Map

	Appendix D: Guide to FELIX Data Structures
	Appendix E: Guide to Using FELIX with the GBT-SCA
	E.1. Introduction
	E.2. Typical test setup
	E.3. Procedure to set up an E-link to a GBT-SCA
	E.4. Low level operations with the fec tool
	E.5. A Software Suite for the Radiation Tolerant GBT-SCA - The Production system
	E.5.1. OpcUaSca server
	E.5.2. ScaSoftware Package

	E.6. SCA References

	Appendix F: Guide to Using FELIX with the SCA eXtension
	F.1. Introduction
	F.2. Establishing a Connection between the SCAX and FELIX
	F.2.1. General Steps
	1. Deploying the SCAX in a pre-existing FPGA design
	2. Connecting the SCAX to a GBT-FPGA or a GBTx
	3. Configuring FELIX Prior to Connectivity Testing
	4. Validating the SCAX’s RX Path
	5. Validating the SCAX’s TX Path
	6. Connecting the OPC Server

	Appendix G: External emulators
	G.1. FELIG
	G.2. FMEmu
	G.2.1. Quick start guide
	G.2.2. FMEmu data format and payload

	References

