FELIX User Manual

ATLAS FELIX Group

Version 5.1.0-15-geb58fba

Table of Contents

1. Welcome to the FELIX User Manual
1.1 Overview
2. Introduction to FELIX
2.1 FELIX Variants and Functionality
2.1.1 Gigabit Transceiver (GBT) and the Versatile Link
2.1.2 Low Power Gigabit Transceiver (IpGBT)
2.1.3 FULL Mode
2.1.4 Interlaken Mode
2.1.5 ATLAS ITk Pixel and Strip
3. Hardware Setup
3.1 FLX-712
3.1.1 Installation
3.2 FLX-182
3.2.1 Installation
3.3 FLX-155
3.3.1 Installation
3.4 VC-709 (Commodity Platform)
3.4.1 Installation of VC-709
3.5 FELIX Host PC
3.5.1 PClIe bifurcation
3.5.2I0MMU
3.6 FELIX drivers
Driver Flags
3.7 Network Interfaces
3.7.1 Network drivers
3.7.2 Network configuration
3.8 TTC Systems
3.8.1 ATLAS Local Trigger Interface (LTT)
3.8.2 Trigger via Electrical Interfaces
3.8.3 Legacy TTC System
4. Software Distribution
4.1 CVMFS
5. Firmware Releases and Programming
5.1 Programming a FELIX card
5.1.1 PCIe hotplug procedure
5.2 Programming an FLX-182
5.2.1 Flashing the SD-card
5.3 Programming an FLX-712

© © © O 00 J N 9 G U b b bbbk

NN NN NN DNDN R R B R) |) |l |, |l) Rl
U W W N NMNNDMO O I 30 0o U U b b N B = = O

5.4 Programming an FLX-709
5.5 Programming FLX cards via JTAG using Vivado
5.5.1 Programming the FPGA Directly
5.5.2 Programming the FLASH ROM (FLX-709/712 only)
5.6 Firmware debugging over PCle
5.6.1 XVC (Xilinx Virtual Cable) for FLX-712/709
5.7 After the Reprogramming
5.7.1 Initialising the Card
5.7.2 Connecting and Initialising Optical Links
5.7.3 Physical Link Layer Status: FLX-712
5.7.4 Physical Link Layer Status: FLX-182
5.7.5 Physical Link Layer Status: FLX-709
5.7.6 Logical Link Layer Initialisation (All FLX cards)
6. Basic Tools
6.1 FELIX E-link Configuration with elinkconfig
6.1.1 Global Panel
6.1.1.1 Data Path Fan Out Selectors: TH_FanOut and FH_FanOut
6.1.1.2 Data Timeout Control Dialog
6.1.1.3 Clock Source Selection Dialog
6.1.1.4 Register Settings Dialog
6.1.2 ToHost Panel
6.1.3 FromHost Panel
6.1.4 Link and Data Generator Configuration Upload Dialog
6.1.5 Guide to Valid E-link Configurations
6.1.5.1 Semi-static Firmware GBT E-link Configuration
6.1.6 Guide to common configuration tasks
6.1.6.1 Working with E-link configurations stored in files
6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a file
6.1.6.3 Configure the to-host Level-1 Accept info E-link (TTC-to-Host E-link)
6.1.6.4 Configure the from-host TTC E-links
6.1.6.5 Configure GBT-SCA E-links to/from host
6.1.6.6 IC channel
6.2 Low Level Tools
6.2.1 fIx-info
6.2.2 fcap
6.2.3 flx-config
6.2.4 flx-init
6.2.5 flx-reset
6.2.6 flx-pod
6.2.7 felix-cmem-free
6.2.8 flx-busy-mon

25
25
27
29
31
31
32
32
33
33
34
34
35
37
39
41
42
43
44
44
45
47
48
49
51
51
51

51
52
53
54
54
54
56
56
57
58
59
59
60

6.3 Dataflow Tools FELIX from/to Host PC 61

6.3.1 fdaq(m) 61
6.3.1.1 Running a DAQ Test with External Data Source 62
6.3.1.2 Running a DAQ Test with Internal Data Generation 63

6.3.2 fupload 64

6.4 FELIX Configuration Tools 65

6.4.1 felink 66
6.4.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width 66

6.4.2 fereverse 67

6.4.3 fgpolarity 68

6.4.4 feconf 69

6.4.5 femu 70

6.4.6 ffmemu 71

6.4.7 fttcemu 71

6.4.8 fttcbusy 73

6.4.9 fexoff 74

6.4.10 fexofftx 75

6.4.11 feto 75

6.4.12 febrc 76

6.4.13 fflash 77

6.4.14 fflashprog 79

6.5 FELIX Data Debugging Tools 80
6.5.1 fcheck 80
6.5.2 fedump 81

6.6 GBTX and IpGBT Configuration Tools 82

6.6.1 fice 82

6.6.2 flpgbtconf 85

6.6.3 fgbtxconf 88

6.6.4 fscai2cgbtx 89

6.7 GBT-SCA Tools 90

6.7.1 fec 90

6.7.2 fscaid 91

6.7.3 fscaio 92

6.7.4 fscaadc 93

6.7.5 fscadac 94

6.7.6 fscai2c 95

6.7.7 fscads24 96

6.7.8 fscajtag 97

6.7.9 fxvcserver 98

6.7.10 fscareply 99

6.8 Tools for IpGBT Control and Monitoring Channels 100

6.8.1 flpgbtio 100

6.8.2 flpghti2c 101
6.8.3 flpghtds24 102

7. Felix-star 104
7.1 Introduction 104
7.2 Architecture 104
7.3 Felix Star executables 106
7.3.1 felix-tohost 106
7.3.2 felix-toflx 108
7.3.3 felix-register 109

7.4 Monitoring 110
7.5 Enabling streams 111
7.6 Quick start 111
7.7 Network Parameters 112

8. Orchestration of FELIX applications 114
8.1 Supervisor 114
8.1.1 Configuration file 114
8.1.2 Control 115
8.1.3 Startup sequence 116
8.1.4 Generation of many config files 117

8.2 Management of multiple FELIX hosts 118
8.2.1 Autostart via Systemd 118
8.2.2 Control multiple hosts 119

8.3 Useful scripts 119
8.3.1 felix-get-ip 119

9. Felix-star client applications 122
9.1 Felix-Client-Thread API 122
9.2 Data Handler / SW ROD OKS configuration 122
10. FAQ, Troubleshooting and User Resources 125
10.1 Frequently Asked Questions 125
10.2 Troubleshooting 125
10.2.1 Known Issues with GBTx 125
10.2.2 IOMMU 126
10.2.3 File Descriptor (FD) Limit 126
10.2.4 Debugging Link Status 127
10.2.5 SMBus Access 127
10.2.6 Problems with CMEM allocation on boot 130

10.3 Guide for System Designers 131
10.4 FELIX Firmware Modules for Front-end Users 133
10.4.1 Downloading Firmware Source 133

10.4.2 GBT Test Modules 133

10.4.2.1 GBT-FPGA
10.4.2.2 GBTx
10.4.3 FULL Mode Test Modules
10.4.3.1 Link Layer Tests
10.4.3.2 Protocol Tests
10.4.4 E-link Wrapper
10.5 External Software Resources and Tools
10.5.1 SCA eXtension — FPGA emulation of the SCA ASIC
10.5.2 IC-over-NetIO
Appendix A: Setting up a TTC System for use with FELIX
A.1 The ALTI System
A.1.1 Software Setup
A.1.2 Sending TTC Signals with ALTI
A.1.3 Testing BUSY signal with ALTI
A.2 The TTCvi/TTCvx (A)
A.2.1 Tuning a TTC system
A.2.2 Guide to TTC Channel B
A.2.3 B channel decoding firmware
A.2.4 Channel B decoding software
A.2.5 Useful documents
Appendix B: FLX-712 Technical Information
B.1 Overall Design
B.2 Fibre Mapping and Connectivity
B.2.1 24 Channel Version
B.2.2 48 Channel Version
Appendix C: Guide to FELIX Data Structures
C.1 ToHost blocks
C.2 TTC2H messages
C.3 FromHost blocks
Appendix D: Guide to Using FELIX with the GBT-SCA
D.1 Introduction
D.2 Typical test setup
D.3 Procedure to set up an E-link to a GBT-SCA
D.4 Low level operations with the fec tool
D.5 A Software Suite for the Radiation Tolerant GBT-SCA - The Production system
D.5.1 OpcUaSca server
D.5.2 ScaSoftware Package
D.6 SCA References
Appendix E: Guide to Using FELIX with the SCA eXtension
E.1 Introduction
E.2 Establishing a Connection between the SCAX and FELIX

133
134
134
134
134
134
134
134
135
137
137
138
138
139
139
142
144
146
146
146
148
148
149
149
150
152
152
152
152
154
154
154
155
156
156
157
159
159
161
161
162

E.2.1 General Steps
E.2.1.1 Deploying the SCAX in a pre-existing FPGA design
E.2.1.2 Connecting the SCAX to a GBT-FPGA or a GBTx
E.2.1.3 Configuring FELIX Prior to Connectivity Testing
E.2.1.4 E.2.1.4 Validating the SCAX’s RX Path
E.2.1.5 Validating the SCAX’s TX Path
E.2.1.6 Connecting the OPC Server
Appendix F: External emulators
F.1 FELIG
F.2 FMEmu
F.2.1 Quick start guide
F.2.2 FMEmu data format and payload
Appendix G: XOFF Connection
G.1 Introduction
G.2 Operation
G.3 XOFF capable E-Links
G.4 Retransmission
G.5 Data format
G.6 XOFF Statistics
Advanced interface and switch configuration

References

162
162
163
163
164
164
164
167
167
167
167
168
170
170
170
170
171
171
172
174
177

0 :'table: 0

1. Welcome to the FELIX User Manual

1.1 Overview

This document is intended to support all users of the Phase-II FELIX readout infrastructure with
installation, maintenance and operation of their system. The document covers all aspects of the
FELIX system from recommended hardware to firmware and driver installation and maintenance.
Finally the full suite of FELIX software will be presented, including useful test tools leading up to
the primary 'felix-star' readout application. For more information users should consult the
following locations for updates:

The FELIX users mailing list:

atlas-tdaqg-felix-users@cern.ch

The FELIX Project Website:
https://atlas-project-felix.web.cern.ch/atlas-project-felix

The FELIX release distribution site:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

This page includes compatibility information for different, firmware, software, driver and user
manual versions. User support requests from users to the FELIX team should be made via the
dedicated JIRA project:

https://its.cern.ch/jira/projects/FLXUSERS

Please report any broken links of obsolete material to help improve the overall quality of our
documentation.

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html
https://its.cern.ch/jira/projects/FLXUSERS

0 :'table: 1

2. Introduction to FELIX

FELIX is a detector readout component developed as part of the ATLAS upgrade effort. FELIX is
designed to act as a data router, receiving packets from detector front-end electronics and sending
them to programmable peers on a commodity high bandwidth network. Whereas previous detector
readout implementations relied on diverse custom hardware platforms, the idea behind FELIX is to
unify all readout across one well supported and flexible platform. Rather than the previous
hardware implementations, detector data processing will instead be implemented in software
hosted by commodity server systems subscribed to FELIX data. From a network perspective FELIX
is designed to be flexible enough to support multiple technologies, including TCP/IP and RoCE.

The FELIX readout system is based on a custom PCIe "FELIX" card hosted on a commodity server.
Front-end data is transferred from the FELIX card into the host memory into a so-called direct-
memory-access (DMA) buffer. The host forwards the data to remote clients over a commodity
network. Data can also flow in the opposite direction, from a remote client to a front-end.

2.1 FELIX Variants and Functionality

FELIX supports different link protocols for the transfer of data to and from front-end peers. Each is
supported by the same hardware platform, with separate firmware revisions both based on the
same core modules. A complete description of all the supported protocols and firmware flavours
can be found in the Phase-II FELIX firmware specification document

2.1.1 Gigabit Transceiver (GBT) and the Versatile Link

The Gigabit Transceiver (GBT) chipset and associated technologies were developed as part of
CERN’s Radiation Hard Optical Link Project. GBT provides an interface an optical connectivity
technology known as the Versatile link, which provides a radiation hard transport of data between
GBT end points. The GBT transmission protocol is designed to aggregate multiple lower bandwidth
links from front-end electronics components into one radiation hard high bandwidth data link
(running at up to 5 Gb/s). The logical lower bandwidth links which make up a GBT link are known
as E-links. The GBT protocol has been implemented both in the dedidated GBTX ASIC as well as
directly on FPGA platforms, the latter of which has been built on for use by the FELIX project.

2.1.2 Low Power Gigabit Transceiver (IpGBT)

LpGBT is the evolution of the GBTX ASIC. LpGBT supports 2.56 Gb/s downlinks (from the readout
system to the front-end) and 5.12 or 10.24 Gb/s uplinks (from the front-end to the readout system).
Similarly to the GBT protocol, LpGBT also defines E-links.

2.1.3 FULL Mode

Within the context of the Phase-I ATLAS upgrade a requirement arose for a higher bandwidth data

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf
https://ep-ese.web.cern.ch/content/gbt-versatile-link
http://stacks.iop.org/1748-0221/7/i=01/a=C01075
https://cds.cern.ch/record/2809057
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://lpgbt-fpga.web.cern.ch/doc/html/

link from detector to FELIX than was possible with GBT. These newer clients did not require
radiation hardness, and were able to support a protocol which could be implemented in FPGAs on
both sides of the link. The resulting development is known as 'FULL mode', referring to full link
bandwidth.

The FULL mode protocol is a implemented as a single wide data stream with no handshaking or
logical substructure (i.e. no E-links). The reduced constraint mean that FULL mode links can
operate at a line transmission rate of 9.6 Gb/s, which accounting for 8b10b encoding means a
maximum user payload of 7.68 Gb/s.

In the downstream direction FULL mode relays clocks and messages from the Local Trigger
interface (LTI). LTI also operates at 9.6 Gb/s and is 8b10b encoded. The 40.079 MHz LHC BC clock is
recovered from the link 240.474 MHz clock.

The Phase-I (rm-4) version of FULL-mode implemented GBT downlinks that transmitted the legacy
TTC signal using a custom encoding.

2.1.4 Interlaken Mode

FELIX supports the Interlaken protocol [6] for transmission rates up to 25 Gb/s from the detector.
From a functional point of view, Interlaken is similar to FULL Mode as links do not have a logical
substructure. Downlinks are rated at 9.6 Gb/s and relay LTI messages.

2.1.5 ATLAS ITk Pixel and Strip

The ATLAS Phase-II Inner Tracker (ITk) adopted various data encodings, including Aurora and
Endeavour. Dedicated firmware have been developed to support ITk pixel and strips sub-detectors.

0 :!table: 2

3. Hardware Setup

The FELIX readout system relies on a custom PCle card. The card developed for the ATLAS Phase-I
upgrade is called FLX-712 Phase-II cards are the FLX-182 (prototype) and FLX-155 (production
card). The Xilinx VC-709 development board can also be used as FELIX card, but firmware support
is being phased out.

o Setting up PCle bifurcation in the host BIOS is required for several configurations.
Pay attention to PCle bifurcation settings when mentioned in the text.

3.1 FLX-712

The FLX-712 card hosts a Xilinx® Kintex® UltraScale FPGA, capable of supporting 48 high speed
optical links via MiniPOD transceivers, and a 16-lane PCle Gen 3.0 interface. FLX-712 interfaces to
the ATLAS Phase-I TTC system using a removable mezzanine. FLX-712 was produced also for Phase-
II tests and can run all Phase-II firmware flavours but cannot interface with LTI nor support 25 Gb/s
links. An image of the FLX-712 and its key features are presented below. More details, including the
fibre mapping, can be found in the FLX-712 hardware manual.

MiniPOD Sockets (x8)

TTC Mezzanine JTAG Connector

’[under TTC mezzanine)
: 9§ =

12 V Power
(8-pin PCle
power
connector)

Kintex UltraScale XCKU115 FPGA

MTP 24 or 48 Coupler

PCleGen 3 x 16

Figure 3.1 A 48-link FLX-712 card.

3.1.1 Installation

The FLX-712 should be installed in a 16-lane Gen >=3 PCle slot on the host motherboard. The FLX-
712 is equipped with a PCIe bridge which turns the two x8 PCle endpoints supported by the FPGA
into a single x16 device. This turned out to be a bottleneck for higher throughput, so the PCIe bridge
has been set up in a transparent mode, exposing the two x8 endpoints directly. This has the
implication that the PCle slot must be set into x8+x8 bifurcation mode from the host BIOS setup. If
this setting is not available for the host PC, the card can be set back into x16 PCle mode by setting

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

the jumper J14:8 into "ON" position, the default production position is "OFF: bifurcation".

Table 3.1 The following firmware and hardware combinations use bifurcation

Version FLX-709 FLX-711 FLX-712 FLX-182 FLX-155
rm4 < 4.14 35 x8 x16 x16 N/A N/A
rm4 >=4.14 35 X8 x16 X8+x8* N/A N/A
rmb5 <5.1_343 X8 N/A xX16 X8+x8 xX8+x8
rmb5 >=5.1_343 X8 N/A X8+x8* X8+x8 X8+x8
o From 4.14_35 and 5.1_343, the FLX712 can be set into x16 mode (no bifurcation) by
setting the dipswitch J14:8 in "ON" position

The board must be connected to power from the system’s internal ATA power supply via an 6-pin
(recommended) or 8-pin PCle power connector (of the type commonly used for graphics cards).
Note that the board does not support use of Xilinx power connectors.

The FLX-712 provides a JTAG connector to which programmers can be connected for FPGA
configuration. The Digilent® HS2 programmer is recommended for this purpose. While this
programmer fits comfortably into the 4U chassis, the 2U chasses will need an additional flexible
adapter. For the 2U chassis, the programmer can be used with a flexible cable fabricated from the
Digilent XUP flywire assembly and a pin header.

Some card management features, such as programming the FPGA from FLASH (see
Section 6.4.9), make use of the host motherboard’s system management bus

o (SMBus) interface to on-card I2C. Please consult your motherboard manual and
ensure that this feature is enabled (typically done by setting a jumper) in order to
have full functionality.

3.2 FLX-182

FLX-182 is a Phase-II prototype card developed by BNL. FLX-182 is equipped with a SoC AMD Versal
Prime VP-1802, FireFly transceivers that provide up to 24 25 Gb/s duplex links, LTI iterface, an
electrical trigger interface and PCle gen4. More details can be found in the I/O Card Hardware
specification document.

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf

Electrical trigger interface
R Y12 FireFly Assebly

CH et TX (orange) + RX (blue)

Ethernet RJ-45

\
microSD slot USB-C JTAG USB-C UART

Figure 3.2 The FLX-182 card.

3.2.1 Installation

The FLX-182 card requires a 16-lane PCle slot (preferably Gen4) with x8x8 bifurcation configuration
for all firmware flavours. One PICe 6+2 pin cable is required to power up the device. Contrarily to
FLX-712, the PCle bracket requires two adjacent PCle slots. The card is provided with a micro-SD
card containing the Petalinux OS for the SoC processing system and an image of the programmable
logic (PL). The PL can be reprogrammed changing the content of the SD card or using the JTAG
controller embedded on the board accessible via the USB-C port on the front panel.

3.3 FLX-155

FLX-155 is the candidate FELIX card for Phase-II ATLAS. FLX-155 uses an AMD Versal Premium VP-
1552 SoC, supports PCle gen5, and can serve up to 48 duplex links each rated up to 25 Gb/s via
FireFly Y12 optical transceivers. One FireFly B04 module provides the LTI interface and a second
optional one a 400 GbE interface (not used by ATLAS). More details can be found in the I/O Card
Hardware specification document.

3.3.1 Installation

FLX-155 has the same physical dimensions of FLX-182 and it requires a 16-lane PCle slot (preferably
Gen6) with x8x8 bifurcation configuration for all firmware flavours. Al least one PICe 6+2 pin cable
is required to power up the device. Similarly to FLX-182, FLX-155 is provided with an SD card
containing both the Petalinux and PL images.

3.4 VC-709 (Commodity Platform)

The hardware platform initially recommended for small scale tests is based on the Xilinx® VC-709

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

Connectivity Kit. This platform provides 4 optical transceivers as well as a Xilinx® Virtex®-7 series
FPGA and 8-lane PCle Gen 3.0 interface. Because this card has only 8 lanes, PCle bifurcation can be
set to Auto or x8x8. All FELIX firmware variants are built for VC-709, but VC-709 does not support
25 Gb/s links. LTI can be connected using one of the four optical transceivers, thus reducing the
data links to three. The Phase-I TTC interface for the system is provided by the TTCfx v3 FMC
mezzanine card, An image of the VC-709 board and guide to features is presented below.

FMC HPC DDR3 SODIMM

USB-to-UART Connector (10x GTH) 2x 64-bit each User LEDs
Bridge Connector

XADC BPI Parallel User
Header NOR Flash Dip Switch

..... B " S) Power Switch

FIXLNG

USB JTAG [FIPTTTINCRN s Phpse R
Interface 187 E) s e " o

12V Power

SFP/SFP+

Cages (4x GTH) User Pushbuttons

PCle x8 Gen 3 SMA GTH PMBus
(8x GTH) Reference Clock Input Connector

Virtex-7 XC7VX690T- SMA
2FFG1761C FPGA User Clock

Figure 3.3 The VC-709 development board.

3.4.1 Installation of VC-709

For full details regarding the VC-709 please consult the manual provided with your equipment. In
terms of installing the card into a FELIX system please follow the following guidelines. The VC-709
should be installed into an 8-lane or 16-lane Gen 3 PCle slot on the host motherboard, taking into
account the need for clearance on all sides. The board must be connected to power from the
system’s internal ATA power supply via a custom Molex adapter provided with the board. The
power socket on the board is shown on the upper right hand corner of Figure 3.3, labelled '12V
Power'. Ensure that the power switch, just above the socket, is switched to the on position.

The FPGA aboard the VC-709 is configured via an on-board JTAG programmer, which can be
connected to a mini-USB cable with the 'USB JTAG Interface' on the top left of Figure 3.3 . A right
angled mini-USB connector is recommended to minimise obstruction of the hosts case lid, although
a straight cable is provided for free with your kit. Note that this has currently only been tested for
USB2, which is the recommended interface. In order to be able to program the card please connect
it to a convenient USB port on your host machine, or to another machine which you wish to use as a
programming server. Finally, ensure that the link transceivers are safely inserted into the on-board
cages.

10

http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

3.5 FELIX Host PC

The host server must provide at least one PCI-e 6+2 pin power connector (same as used for GPUs)
and one x16 PCle slot connected to the CPU. For FLX-182 and FLX-155 the chassis must offer enough
space in the surrounding of the MOLEX power socket: both cards have full-height full-length (FHFL)
format and are 312 mm long. Recommended requirements are listed below.

Component Model

CPU AMD EPYC 9004 series or 5th Gen Intel Xeon
Memory at least 32 GB

Network card Nvidia/Mellanox Connect-X5 or superior

Tested FELIX hosts are described at https://atlas-project-felix.web.cern.ch/atlas-project-
felix/user/serverhw.html

3.5.1 PClIe bifurcation

PClIe bifurcation is configured in BIOS. Changing the setting requires physical access to the server
or the use of a remote management application such as the Supermicro SUM utility.

BIOS might list PClIe slots as they are labelled on the motherboard (e.g. SLOT 3), or as they are
connected to the CPU (e.g. CPU1 Package Group P2). In the letter case the mapping between physical
and listed slots can be deduced reading the motherboard manual. Since the advent of PCle Gen4,
mezzanines hosting PCle slots are often connected to the motherboard using MCIO cables, each
carrying 8 lanes of PCle. In this case, the motherboard manual might show the mapping between
CPU Package Groups and MCIO sockets.

Applying x8x8 bifurcation to all slots is not recommended: other PCle devices installed in the
system are likely to keep working but at half-bandwidth.

3.5.2 I0OMMU

The input-output memory management unit IOMMU) is a hardware component that maps virtual
to physical memory. This memory re-mapping introduces performance penalties for high-
throughput devices and is not supported by FELIX. If IOMMU is enabled in its default mode, FELIX
cards are detected but uplink data looks corrupted.

« If the host has less than 255 logical cores, disable IOMMU using one of the following options:
1. using BIOS;

2. changing Linux boot cmdline (grub) options (requires sudo permissions): edit the file
/ete/default/grub adding GRUB_CMDLINE_LINUX_DEFAULT="amd_iommu=off" for an AMD CPU, or
GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=off" for an Intel CPU. Apply the setting with grub2-
mkconfig -o /boot/grub2/grub.cfg and reboot.

* If the host has 255 logical cores or more, set IOMMU in pass-through mode in the Linux grub
options. Open /etc/default/grub and add the line GRUB_CMDLINE_LINUX_DEFAULT="1iommu=pt". Apply
the setting with grub2-mkconfig -o /boot/grub2/grub.cfg and reboot. You can check the system

11

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/serverhw.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/serverhw.html

logs to verify that the setting has been applied:

dmesg -T | grep iommu
[Wed Feb 19 09:49:17 2025] iommu: Default domain type: Passthrough (set via kernel
command line)

3.6 FELIX drivers

The latest recommended version of the FELIX driver is available on the release distribution site.

In order to update the FELIX driver it will first be necessary to remove any existing driver
installations from your system. To do this please follow the procedure outlined below. You will
require superuser privileges in order to perform the driver de-installation itself and subsequent
cleanup.

To check if a driver is already installed issue the following command:
rpm -ga | grep tdaq

If a driver rpm is installed you’ll see a response along the lines of:
tdaq_sw_for_F1x-4.7.0-2dkms.noarch

To remove the driver do the following (substituting 'filename' for the results of the search in the
previous step):

rpm -e filename

Once this operation is complete you will be in a position to install the latest FELIX driver. To install
the FELIX driver RPM, run the following command (superuser privileges required):

dnf install tdaq_sw_for_F1x-4.9.0-2dkms.noarch.rpm

(this should take 1-2 minutes to complete, due to the need to compile the driver for your kernel as
per the DKMS framework)

Once the driver is installed you should start it as follows (as superuser):
/etc/init.d/drivers_flx start

Once started you can check the status of the card using:

cat /proc/flx

You should see output similar to what is shown below (will vary depending on your firmware
version(s) and the number of cards in your system; here one card is installed):

$ cat /proc/flx
FLX driver (ALMA9 ready) for FELIX release 4.14 (compatible with RM4 and RM5 F/W and
XVC). Based on tag felix-drivers-04-14-00, flx.c revision 013900

12

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

Debug =0
Number of devices detected = 2
Locked resources
device | global_locks

S R —

0| 0x00000000

1| ©0x00000000
Locked resources
device | resource bit | PID | tag
Device 0: (BAR® = 0xf6200000)
Card type : FLX-712
Device type 1 0x0427
FPGA_DNA : 0x013361281c212245
Reg Map Version ¢ 5.1
GIT tag 1 rm-5.1
BUILD Date and time : 16-7-2024 at 17h52
GIT commit number 1 494
GIT hash : 0x053ae4db
Firmware mode : FULL
Number of descriptors i 5
Number of interrupts 1 8

Interrupt name |ToHost @|ToHost 1|ToHost 2|ToHost 3|reserved|CR Xoff |BUSY

full |

Interrupt count | 780 |
0|

Interrupt flag | 1|
1]

Interrupt mask | 1|
1]
MSI-X PBA 00000000
XVC:

Device 1: (BARO = 0xf6600000)
Card type :
Device type

FPGA_DNA

Reg Map Version

GIT tag

BUILD Date and time
GIT commit number

GIT hash

Firmware mode

Number of descriptors
Number of interrupts

0 | 0 | 0 | 0 |
1] 1] 1| T
1] 1] 1| T

: FLX-712

: 0x0428

: 0x013a61281c212245

5.1

:rm-5.1

: 16-7-2024 at 17h52

: 494

: 0x053a3e4d6

: FULL

5
1 8

| TH

0 |

13

Interrupt name

full |

Interrupt count |

0 |

Interrupt flag |

0 |

Interrupt mask |

1]
MSI-X PBA

XVC:

The command '

| ToHost @|ToHost 1|ToHost 2|ToHost 3|reserved|CR Xoff |BUSY | TH

147 | 0 | 0 | 0 | 0 |

1 0| 0 |

T T

00000000

echo <action> > /proc/flx', executed as root,

allows you to interact with the driver. Possible actions are:

debug -> Enable debugging

nodebug -> Disable debugging

elog -> Log errors to /var/log/message

noelog -> Do not log errors to /var/log/message

swap -> Enable automatic swapping of 0x7038 / 0x7039 and 0x427 / 0x428
noswap -> Disable automatic swapping of 0x7038 / 0x7039 and 0x427 / 0x428

clearlock ->

Clear all lock bits (Attention: Close processes that hold lock bits

before you do this)

Driver Flags

The /proc/flx interface makes it possible to toggle certain parameters by issuing the following
command:

echo <action> > /proc/flx

By substituting <action> it is possible to do the following (only a selected list below):

* Enable/disable automatic re-ordering of FELIX cards to a more intuitive order w.r.t device type
('swap' or 'noswap').

¢ Clear all device locks with 'clearlocks'

The FELIX driver makes use of 'Dynamic Kernel Module Support' (DKMS) to
automatically track kernel changes once installed. Users should therefore only
need to change their installation if a new version of the driver itself is released.

3.7 Network Interfaces

FELIX software makes use of RDMA network technology, more specifically RoCE v2 (RDMA over
Converged Ethernet version 2). To benefit of the full software capability it is recommended to
install in the FELIX host an RDMA-capable network interface card (NIC).

NICs used by ATLAS in production during Run 3 are listed below. The 25 GbE NIC is the most

14

affordable.

 dual-port 25 GbE NVIDIA ConnectX-5 EN SFP28 3.0 x8 (part number: MCX512A-ACAT)
* dual-port 100 GbE NVIDIA ConnectX-5 EN QSFP28 3.0 x16 (part number: MCX516A-CCAT)

NICs used for Phase-II development of the DAQ system, but rather expensive for users, are

* dual-port 200 GbE NVIDIA ConnectX-6 EN QSFP56 4.0 x16 (part number: MCX653106A-HDAT)

* dual-port 200 GbE (400 GbE) NVIDIA ConnectX-7 EN QSFP112 5.0 x16 OCP3.0 (part number: 900-
9X760-0018-MB2/MCX753436MC-HEAB)

For RDMA to be working the NIC ports have to be active. This requires an optical

o or copper cable to be connected. A dual-port NIC can be connected to itself using
short and cheap twinax copper cables such as MCP1600-C001 for 100 Gb/s or
MCP2MO00-A001 for 25 Gb/s.

3.7.1 Network drivers

It is recommended to install NVIDIA MLNX_OFED drivers. MLNX_OFED recompiled by the FELIX
Team for the latest AlmaLinux9 kernels can be downloaded at https://atlas-project-
felix.web.cern.ch/atlas-project-felix/user/releases.html

To install the drivers untar the archive and run
sudo ./mlnxofedinstall --vma

The driver installation will take care of updating the network card firmware as well at need.

3.7.2 Network configuration

If the FELIX/Data Handler node is self-managed (i.e. not managed by ATLAS DAQ SysAdmins) the
data network cards have to be assigned static IPs. This can be done as follows.

1. Identify the MAC address of the newly installed cards with ifconfig -a. A dual-port NIC has
consecutive MAC addresses.

2. Create a device configuration file in /etc/sysconfig/network-scripts/. For example, to call the
interface priv@ create a file called ifcfg-prive with content:

DEVICE=priv@

HWADDR=<paste MAC here>

TYPE=Ethernet

IPADDR=<your favour IP address e.g. 192.168.100.1>
NETMASK=255.255.255.0

ONBOOT=yes

MTU="1500"

IPV6INIT=no

15

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

1. A similar file, called e.g. ifcfg-privl can be created to configure the second port of the NIC (if
available) as interface priv1.

Advanced settings for both the network interface and a switch can be found in the Appendix H

3.8 TTC Systems

3.8.1 ATLAS Local Trigger Interface (LTI)

FLX-155 and FLX-182 can be connected to LTI using the dedicated MTP-12 connector which
provides 4 duplex links mapped as shown in Figure 3.4 and Figure 3.5 . Only one duplex link is
needed for LTI communication: by default link 0 is used. The LTI interface provides clock, LTI
signals and allows FELIX to report BUSY. The LTI data format is described in the LTI Specification
Document.

POSITION 1

12 FIBER CONNECTOR

Figure 3.4 Fibre numbering on the MTP-12 connector used by the FELIX optical transceiver.

16

https://edms.cern.ch/ui/file/2379978/1/ttc_specs_v1_1.pdf
https://edms.cern.ch/ui/file/2379978/1/ttc_specs_v1_1.pdf

SIGNAL MAP
LOAD SEQU ENCEIFUNCTIONI COLOR MTP POSITION
1 Rx0 BLUE 1
2 Rx1 ORANGE 2
3 Rx2 GREEN =
4 Rx3 BROWN 4
5 Dark |SLATE 5
6 Dark |WHITE 6
7 Dark |RED 7
8 Dark BLACK 8
9 Tx4 YELLOW 9
10 Tx3 VIOLET 10
11 [}7 ROSE 11
12 | Tx1 |AQUA 12

Figure 3.5 Fibre mapping of the 4-link transceiver on the MTP-12 connector.

It is possible to interface FLX-712 and FLX-709 to LTI as well using data links and custom firmware.
No procedure has been defined so far. In case of interest open an FLXUSERS ticket.

3.8.2 Trigger via Electrical Interfaces

FLX-155 and FLX-182 are equipped with electrical connectors on the front panel that allow to
provide a clock and a trigger signal. With reference to Figure 3.2, for FLX-182, a NIM trigger signal
can be connected to the TRG MMCX connector, while a clock signal must be connected to the PPSIN
connector.

3.8.3 Legacy TTC System

The TTC system used between Runl and Run 3 (ALTI, TTCVi) can be connected only to FLX-712 and
FLX-709 using a Multi-Mode fibre (using a single-mode fibre from ALTI might require an
attenuator). The setup of ALTI and TTCVi is covered in Appendix A.

FLX-712 comes with a dedicated ST connector for TTC and a LEMO connector to propagate the BUSY
signal. The BUSY signal is the ATLAS standard open-collector BUSY signal, but with a weak 24 kOhm
pull-up to 5 V to allow viewing on an oscilloscope.

17

http://ttc.web.cern.ch/TTC

VC-709 requires the TTCfx mezzanine card shown in Figure 3.6 . In addition to the ST connector, the
mezzanine provides a LEMO for the propagation of BUSY. To install the mezzanine,connect the P
and N SMA GTH Reference Clock inputs on the VC-709 (middle bottom of Figure 3.3) to the SMA
connectors on the TTCfx v3 (P to P and N to N) via suitable SMA cables, "!. The right angle side goes
on the VC-709, to make the cable bending a bit more gentle. If you have space in your chassis,
straight SMAs on both ends will do the job as well. The TTCfx mezzanine card requires no specific
firmware programming, and should work out of the box once connected to a TTC peer.

E204460
M11 S 94V-0
chbibwe®

Qcs3
PMI

FELIX CLK DISTRIBUTION - WEIZMANN INSTITUTE OF SCIENCE

Figure 3.6 Image of a TTCfx v3 card.

18

http://www.ohwr.org/projects/optical-cdr-fmc/wiki

0 :!table: 3 :numbering:

[1] An example SMA cable can be found here: https:/eumouser.com/ProductDetail/Amphenol-RF/135103-01-0600?
qs=sGAEpiMZZMvI9ULLAfKm5f6h8NuxRC2d]

19

https://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600?qs=sGAEpiMZZMv9ULLAfKm5f6h8NuxRC2dJ
https://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600?qs=sGAEpiMZZMv9ULLAfKm5f6h8NuxRC2dJ

4. Software Distribution

A FELIX release contains all that is needed to interact with any (programmed) FELIX card from the
host PC. FELIX software is formally supported and built for systems using the AlmaLinux9
operating system.

New releases are announced on the following e-group:
atlas-tdaqg-felix-users@cern.ch

The latest recommended version of the FELIX software suite is available on the release distribution
site.

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

The FELIX software release is available pre-compiled as a tarball which can be installed anywhere
and then set up for use by running a command line script. Each user can download their own
version, or the release can be installed centrally and the location of the script shared with users.

To unpack the tarball, run the following command:
tar -xvzf <filename>

Once unpacked, a setup script gives access to all libraries and binary files. The script is sourced as
follows:

source felix-05-01-00/x86_64-e19-gcc13-opt/setup.sh

This script will need to be run with every new session, or added to the environment setup
procedure. Once complete you should have access to all FELIX software. In the next section we will
describe how to test your installation to verify full functionality.

4.1 CVMES

Installation of the latest and nightly versions of the FELIX software are available in CVMFS under:

/cvmfs/atlas-online-nightlies.cern.ch/felix/releases

/cvmfs/atlas-online-nightlies.cern.ch/felix/nightlies
to set up run:

source felix-05-01-00/x86_64-e19-gcc13-opt/setup.sh

20

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.htmll

0 :!table: 4 :numbering:

21

5. Firmware Releases and Programming

FELIX firmware (and software) releases are announced on the following e-group:
atlas-tdaqg-felix-users@cern.ch

Releases, complete of changelogs, are advertised at:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

The reference document for all firmware features and technical details is:

https://atlas-project-felix.web.cern.ch/atlas-project-
felix/user/docs/FELIX_Phase2_firmware_specs.pdf

o firmware releases are labelled by the register map used. Firmware tagged rm-4.XY
is for Phase-I. Phase-II firmware has tag >= rm5.0.

The FLX-709 builds are released for two hardware configurations. If the TTCfx3

mezzanine card is installed, the Si5345 on the mezzanine can be used, and the TTC

clock can optionally be selected as an input clock through elinkconfig. Lacking a

TTCfx3 mezzanine, another build supports the Si5324 jitter cleaner on the VC709
o board. The version with Si5324 support can be recognized with the SI5324

keyword in the archive filename:

FLX709_FULLMODE_4CH_CLKSELECT_GIT_master_rm-

4.9 278_200619_14_13.tar.gz (TTCfx3 / Si5345 support) or

FLX709_FULLMODE_4CH_CLKSELECT SI5324_GIT_master_rm-

4.9 _278_200619_05_38.tar.gz (VC709 standalone / Si5324 support).

5.1 Programming a FELIX card

Reprogramming a FELIX card installed in host PC requires rebooting the host
o computer or executing a PCIe hotplug. The PCIe hotplug procedure is described in
Section 5.1.1.

During a reboot PCle devices remain powered. During a power-cycle, PCle devices

o loose power. If a FELIX card looses power, the FPGA reprograms itself using the
pre-defined persistent memory source (flash memory or the SD card on FLX-
182/155).

5.1.1 PCIe hotplug procedure

If you wish to avoid rebooting your machine it is possible to rescan the PCIe bus. This procedure is
not stable under all circumstances, and may produce inconsistent results. Having setup a FELIX
release run:

pcie_hotplug_remove.sh

22

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf

Then, rescan the PCle devices with:
pcie_hotplug_rescan.sh

The last step also restarts the drivers.

5.2 Programming an FLX-182

Firmware for FLX-182 and FLX-155 is distributed in the form of files to be loaded on the SD-card
provided with the card.

Both cards are equipped with an integrated JTAG programmer accessible via an USB-C connector on
the front panel. The JTAG interface can be used to reprogram the programmable logic as described
in Section 5.5. Nevertheless, reprogramming the PL might cause the operating system running in
the PS to stop responding.

Both FLX-155 and FLX-182 implement an UART interface accessible via USB-C. The

o UART interface connect to the processing system and gives access to a AlmaLinux9
terminal over serial communication. To access the FLX-182 UART from a Linux PC
connected via USB run sudo screen /dev/ttyUSB1 115200 -cstopb.

5.2.1 Flashing the SD-card
o To flash the SD-card on an FLX-182 you need to have physical access to it!

1. Download the firmware

Download the firmware from FELIX Releases

The SD-cards provided are already partitioned into BOOT and LINUX
o partitions. If so, skip to Update Partitions.

If for some reason the SD-card is not partitioned, continue with Partition SD.

2. Partition the SD-card

You can partition the SD card using fdisk, gparted, or any partitioning tool you prefer, the end
result should be:

> A 1GB bootable partition labeled "BOOT"

o A second partition using the remaining space labeled "LINUX"

Below there is a step-by-step guide using fdisk.

ﬁ Make absolutely sure you’ve identified the correct device. Using the wrong
device name could result in data loss on your system drives.

o Unmount the SD card

23

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/releases.html

sudo umount /dev/sdX* # Replace sdX with your device name

o Create the partition scheme

sed -e 's/\s*\([\+0-9a-zA-Z]*\).*/\1/"' << EOF | sudo fdisk /dev/sdX
Replace sdX with your device name

of
n #
p #
T#

#

clear the in-memory partition table
new partition

primary partition

partition number 1

default - start at beginning of disk

+1024M # 1 GB boot partition

n
p

#
2 #
#
#
at
T#
p #
w i

EOF

new partition

primary partition

partition number 2

default, start immediately after preceding partition
default, extend partition to end of disk

make a partition bootable

bootable partition is partition 1 -- /dev/sdal

print the in-memory partition table

write the partition table

o Format and label the partitions

Format and label the boot partition
sudo mkfs.fat -F 32 /dev/sdX1
sudo fatlabel /dev/sdX1 BOOT

Format and label the Linux partition
sudo mkfs.ext4d /dev/sdX2
sudo e2label /dev/sdX2 LINUX

3. Update BOOT Partition

24

Remove the existing files in BOOT and then copy in the new files:

rm -rf /path_to_device_mounting_point/B0O0OT/*
cp -R path_to_new_files_directory/* /path_to_device_mounting_point/B0O0T/

For example:

rm -rf /run/media/username/BO0T/*
cp -R ~/FLX182_GBT/PETALINUX_KERNEL/* /run/media/username/B0O0T

4. Update LINUX Partition

Remove the existing files in LINUX and then extract the new filesystem into the partition:

rm -rf /path_to_device_mounting_point/LINUX/*
cd /path_to_device_mounting_point/LINUX && sudo cpio -id <
path_to_new_files_directory/rootfs.cpio

For example:

rm -rf /run/media/username/LINUX/*
cd /run/media/username/LINUX && sudo cpio -id <
~/FLX182_GBT/PETALINUX_ROOTFS/rootfs.cpio

5.3 Programming an FLX-712

FLX-712 can be programmed from the host PC using the FELIX software tools fflashprog and fflash
described in <6_basic_tools#sec:basictools>. The former loads an .mcs flash image file in one of the
four memory partitions over the PCle interface. Then, fflash programs the FPGA from the flash
memory using I2C commands.

o In case of power loss, the FPGA is reprogrammed using partition number 3. The
default partition is set by jumpers as described in Appendix B

o fflash relies on the SMBus to access the PCle 12C bus. This technology\ must be
supported by the motherboard or the SMC. Not all servers support this technology.

Alternatively, both the flash memory and the FPGA can be programmed via JTAG using Vivado as
described in Section 5.5. An USB-JTAG programmer such as the Digilent® HS2 is necessary.

5.4 Programming an FLX-709

FLX-709 comes with an on-board JTAG programmer accessible via USB. The JTAG interface is the
recommend way to reprogram FLX-709.

5.5 Programming FLX cards via JTAG using Vivado

Programming FELIX cards via JTAG requires Vivado or Vivado Lab. Both can be downloaded from
the AMD website and Vivado Lab does not require a license. After the installation you need to
install the cable drivers. On Linux:

cd ${vivado_install_dir}/data/xicom/cable_drivers/1in64/install_script/
install_drivers/
./install_drivers

25

The USB cable or programmer can then be used to connect a FELIX card to the host where Vivado is
run. Vivado is started with

<installation path>/xilinx/Vivado/2024.1/bin/vivado

A similar path is used for vivado_lab. You will then be presented with the Vivado™ splash screen,
where you should select 'Open Hardware Manager' as shown in the red box in Figure 5.1 .

a* Applications Places Vivado Lab Edition 2020.2 Sat21:22 & o) O

Rk Vivado Lab Edition 2020.2 - X

File Tools Window Help Q- Quick Access

VIVADO' & XILINX

Lab Edition

Quick Start

Create Project >

Open Project >

Open Hardware Manager »

Learning Center

Documentation and Tutorials >
Quick Take Videos »
Release Notes Guide »

Tcl Console

8 4 Vivado Lab Edition 2020.2]

Figure 5.1 Vivado™ Splash Screen.

From the hardware manager select 'Open Target' on the top left as shown in Figure 5.2 and choose
'Open New Target'.

n Appl.htmns Places Vivado Lab Edition 2020.2

Vivado Lab Edition 2020.2

File Edit Teols Window Layout View Haelp Q- Quick Access
H-J o Dashboard
0 no hardware target is open] Open target
Hardware 2 s
=

Figure 5.2 Vivado™ Hardware Manager.

From this point, select 'Next' on the following screen and 'Connect to Local Server' after that, once

26

again press 'Next'. This should bring you to the hardware list. On this screen select the FELIX FPGA
from the uppermost list (if you have only one board there should be only one entry, if not, find
yours in the list by name). The screen you will see is shown in Vivado™ Target Selector. FLX-712’s
Kintex Ultrascale FPGA appears as xkcul15_0.. Once you have found your FPGA and selected it
press 'Next' on the bottom right and 'Finish' on the following screen.

Vivado™ Target Selector. FLX-712’s Kintex Ultrascale FPGA appears as xkcul15_0.

VC-709’s Virtex7 FPGA appears as xc7vx690t_0.
image::figures/vivado_selectfpga.png[caption="Figure 5.1 "]

From here, you will be taken to the main programming interface, as shown in Figure 5.3 . You are
now ready to program your FPGA or FLASH.

File Edit Tools Windew Layout Wew Help Q- Quick Access
ﬂ-‘ - B £+ b3 Dashboard ~

@ There are no debug cores. Program device Refresh device

== Default Layout [

Hardware ?2 00X
Q = = L

Name Status
~ I pctbedfelix03(3) Connected

~ @ e xilink_tcf/Digilent/210249A847 Open
~ {8 xckullS_0 (1) Programmec

IE SysMon (System Monitor)
B o xilink_tcf/Digilent/210249484« Closed
B o xilink_tcf/Digilent/210249485(Closed

< >

Hardware Device Properties ? 0K X

i kckulls 0 o

Name: wckulls_o
Part: ®ckulls

ID code: 13900083
IR length: 12

Status: Programmed

Programming file:

General Properties

Tcl Console x Messages | Serial /O Links | Serial /O Scans
a = £ I B B o
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/210249484798]

: set_property PARAM.FREQUENCY 10000000 [get_hw_targets */xilinx_tcf/Digilent/210240484798]
open_hw_target

INFO: [Labtoolstcl 44-466] Opening hw_target pc-tbed-felix-03:3121/xilinx_tcf/Digilent/210249A84798
. current_hw_device [get_hw_devices xckullS_g]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices xckull5_0] @]
- INFO: [Labtools 27-1434] Device xckullS (JTAG device index = 0) is programmed with a design that has no supported debug core(s) in it.

! v
<

Type a Tcl command here

Figure 5.3 Vivado™ Programming Interface.

5.5.1 Programming the FPGA Directly

To program an FPGA directly, select it from the device list on the main programming window (as
shown in Figure 5.4, right click and select 'Program Device'.

27

Vivado Lab Edition 2020.2

- B X
File Edit Tools Window Layout View Help Q- Quick Access
= - =] o)4 Dashboard - 2= Default Layout v
© There are no debug cores. Program device Refresh device
Hardware ? 00X
a = | = &
Name Status
~ ¥ localhost (4) Connected
B o xilinx_tcf/Digilent/210249A73[Closed
~ @@ xilinx_tcf/Digilent/210249A30¢ Open
~ ExckullS_D{" o =
- Hardware Device Properties.., Ctri+E
SysMon
B o xilinx_tcf/Dig IProgram Device... |
B < xilinx_tcf/Dig Verify Device...
' Refresh Device
Show Bus Plot...
2 - add Configuration Memory Device...
Tcl Console M‘ Boot from Configuration Memory Device > _ DO
- Program BBR Key...
Qa = ¢ n|
N | Clear BBR Key...
7 close_hw_target { ~
~ INFO: [Labtoolst(Program eFUSE Registers... f/Digilent/210249A7307C
2 open_hw_target {]
=) INFO: [Labtoolst¢ Export to Spreadsheet... /Digilent /210249430860
. current_hw_devic W U
=) refresh_hw_device -update_hw_probes false [lindex [get_hw_devices xckullS 0_1] 0]
—) INFO: [Labtools 27-1434] Device xckullS (JTAG device index = 0) is programmed with a design that has no supported debug core(s) in it.
! v
< >
Type & Tcl command here

Figure 5.4 Selecting Device to Program.

You will now be asked to select a file as shown in Figure 5.5 . For FLX-712 and FLX-709 the file has
extension .bit, for FLX-182 and FLX-185 it has extension .pdi. This file can be found in the firmware
tarball as specified at the start of this chapter. You do not need to select a debug probes file. Once a

file has been chosen, select 'Program' on the bottom right to write the file to the FPGA. Once
complete your FPGA should now be fully reprogrammed.

Program Device x

Select a bitstream programming file and download it to your hardware device. You

can optionally select a debug probes file that corresponds to the debug cores '
contained in the bitstream programming file.

The desired bitfile

Bitstream file: ffirmware/PRBS/fix712_qpll_ibert_9.6gbps_vivado_15.4.bit|

Debug probes file: ffirmware/PRBS/fIx712_ibert_9.6_qpll. ltx .

Enable end of startup check Optional debug file

Figure 5.5 Selecting Bit file to Program.

28

5.5.2 Programming the FLASH ROM (FLX-709/712 only)

To program the FLASH ROM start once again from the main programming window. Find and right
click on your FPGA and select 'Add Configuration Memory Device' in the list, as shown in Figure 5.6

Vivado Lab Edition 2020.2 = a x

File Edit Tools Window Layout View Help Q- Quick Access
= E o ¥ Dashboard ~ == Default Layout v

© There are no debug cores. Program device Refresh device

Hardware ? 00O X
a = 2 o
Name Status

v & localhost (4) Connected

~ [e xilink_tcf/Digilent/210248A73[Open
~ {8 xckyrr e -

TF of Hardware Device Properties... trl+E
B o xilink Program Device...
B o xilinx Verify Device...

B o xling C Refresh Device

Show Bus Plot...

IAdd Configuration Memory Device... I

< 1 Boot from Configuration Memory Device

Program BBR Key...
Clear BBR Key...

Hardware De

i kckullS_0
Program eFUSE Registers...

Name; Export to Spreadsheet...

Part: ®ckullS

ID code: 13900093 o
N >

General FProperties
Tel Console Messages Serial I/0 Links | Serial I/0 Scans

Figure 5.6 Select Vivado™ Flash Programming Dialog.

From here you will be taken to the a dialog requesting that you select the memory device you wish
to program. To find it quickly enter the criteria demonstrated in Figure 5.7 and select the device as
shown. Look for the device with alias '28f00ag18f".

29

Vivado Lab Edition 2020.2 - = x

File Edit Tools Window Layout View Help Q- Quick Access
= £ & » Dashboard ~ = Default Layout v

-

© There are ng’) _ .
j Add Configuration Memory Device x

Hardware
o Choose a configuration memory part.
-

Q=3 For FLX-712 use: 28f00bm29ew-bpi-x16

Name
v ¥ localhost pevice: ® xckutrs o FOF VC-709 use: mt28gu01gaaxie-bpi-x16
~ @ xlin -
v & xckiFilter
— Manufacturer All v Type | All v
B < xilin) |) Al
B xin Density (Mb) Al ~ Width ~

B o xilin Reset All Filters

Select Configuration Memory Part

< Search: Q-
Hardware Dq? Name Part Manufact.., Alias Family T
| “ 28f00am29ew-bpi-«x16 28f00am29%ew Micron m29ew b
4 xckulls_0 o :
- 28fo0am29ew-bpi-«8 28fo0am29ew Micron m29ew b
" 28f00ap30b-bpi«16 28f00ap30b Micron 30 b
Name: < P P P P 3 =
ID code
-
£ T, el
General Froperties
Tel Console Messages Serial /O Links Serial I/O Scans

Add a Configuration Memory Device

Figure 5.7 Memory Device Selection Interface.

Once selected, press 'Ok’ on the bottom right and 'Ok’ again on the following window asking 'Do you
want to program the configuration memory device now?'. On the subsequent dialog, choose the
.mcs file you wish to program (provided with your firmware release) as shown in Figure 5.8 . Select
'Ok’ at the bottom to program the FLASH. Once complete your card should be programmed with a
non-volatile firmware installation that will survive loss of power to the host.

30

Vivado Lab Edition 2020.2 - o x

Eile Edit Tools Window Layol Program Configuration Memory Device X
I~ N B X & == Default Layout ~
2] Select a configuration file and set programming eptions.
© There are no debug cores. Frogram ¢ '
Hardware 2?
Memory Device: {8 28f00am29ew-bpi-x16 |E|
Q = &
Configuration file: |GIT_master_rm-4.9_274_200612_22_14.mes|?|[+]
Name
+ I localhost (4) PRM file: E

v W # Xlinx tcfiDigllent/21 02454723 State of non-config mem I/Q pins: | Pull-none «

~ & xckull5_0 (2)

IE SysMon (System Monitor) Program Operations
28f00am29ew-bpi-x16

B @ xilinx_tcf/Digilent/210249A30¢

B o xilinx_tcf/Digilent/210249A84° RS Pins: MONE v

B o xilinx_tcf/Digilent/210249A84¢

Address Range: Configuration File Only v

[+ Erase
[Blank check
< 1 -
%] Program
Configuration Memory Devi 3 ¥ Verify
28fo0am29ew-bpi«16 - [) Verify Checksum
Name: 28f00am29ew-bpix gyf Options
Memory Part: @ 2sfo0am29ew-bp [create SVF Only (no program operations)
Memory type: bpi F File
Memory density: 1024 .
: | ® [Cora] [om0
Tcl Console Messages Ser;

T T
Configuration Memory Device: 28f00am29ew-bpi-x16

Figure 5.8 Selecting .mcs file to program.

5.6 Firmware debugging over PCle

5.6.1 XVC (Xilinx Virtual Cable) for FLX-712/709

If a bitfile for FELIX includes an ILA (chipscope / debug probe), and XVC has been enabled at build
time, the firmware can be debugged without the need of a USB / JTAG cable.

* A compatible firmware built must be requested.

* The flx driver >= version 4.10 must be installed on the server running the FLX card.

» Execute the program "xvc_pcie", this program can be found in the felix distribution.

* Run Vivado, either on the machine hosting the FELIX card, or on any machine with network
access to that machine.

* In Vivado click "Open Hardware Manager", then "Open target", then "Open New Target..."
¢ In the wizard, click "Next", then select Connect to: Local machine.

* Select "Add Xilinx Virtual Cable (XVC)

» For host name, the host running the felix card, Port: 10200

* When highlighting "debug bridge_0", select the debug_nets.ltx file from the archive above in the
"probes file" section, as shown in the figure below.

31

HARDWARE MANAGER - localhost/iline_tcffXilinw/agogna: 10200

Hardware

Q = 2 > » H

MName

Hardware Device Properties

v [l wilinw_tefiilin/agogna: 10200 Open

« {8 debug_bridge_0 (2)

hw_ila_1 (gl.ila_bloc

i debug_bridge_0

Name: debug_bridge_0
Part: debug_bridge
ID code: 0ADD3093

IR length: 5]

Status: (R

Programming file:

Probes file:

User chain count: 4

General Properties

2.8.221212 14 51_debug_nets.ltx [++-]

7?7 00X
o
Status
MN/A
ldle w
7 OO0 X
- o

hw ila_.l x hw_vios x

Dashboard Options

Waveform - hw_ila_1
o + e > » B E @ @ 2 ¥

ILA Status: Idle

Name Value
» Mil...0] ecoco0Oq ..
foOooo00(

> <

Settings -hw_ila_1 | Status -hw_ila_l x

= » N
Core status @ Idle

Capture status - Window 1 of 1

Window sample 0 of 1024

5.7 After the Reprogramming

Tcl Console x Messages

Figure 5.9 Vivado debug interface using Xilinx XVC over PCle.

5.7.1 Initialising the Card

This section assumes you have set up the FELIX software infrastructure as in Section 4. If you have
not, then please do so before proceeding.

FELIX requires a clock source in order to synchronise propagation of signals both within the FPGA
and to external peers. The FELIX firmware supports the use of both a received clock from an
external TTC source as well as an internally generated clock for users who don’t need or have

access to a such a system.

To initiliase the card run flx-init. By default the internal clock is taken as source. To use the TTC

clock pass the option -T

To view the overall clock status, one can run the FELIX info tool, or f1x-info. This can be run with
no command line parameters to dump summary information for your board as follows:

f1

x-info

Clock settings can then be viewed in the Clock resources section of the output, shown here:

32

Clock resources

MAIN clock source
Internal PLL Lock

LCLK fixed
YES

GBT Wrapper generated : YES

TTC (ADN2814) status

Bit D5=1 (LOS): No light. Check fiber connection to FLX card
(ADN2814 MISC register: 0x29)

The TTC clock is successfully configured when the 'Clock resources' section looks like this:

Clock resources

MAIN clock source : TTC fixed
Internal PLL Lock . YES
GBT Wrapper generated : YES

TTC (ADN2814) status

TTC optical connection is up and working

5.7.2 Connecting and Initialising Optical Links

The first step to bringing up your links is to connect your fibres to the transceiver, ensuring not to
place excessive strain on them. Once the connectors are properly seated, you can check the physical
status of your links.

5.7.3 Physical Link Layer Status: FLX-712

In order to check the status of your physical connections for a FLX-712 (which are MiniPOD-based)
run the following:

flx-info POD

There will be many lines of output, but you should check the section labelled MiniP0Ds as shown
below:

MiniPODs

Only the 8 active MiniPODs will be shown
NOTE: The MiniPODs of both devices will be shown

| 1st X | 1st RX | 2nd TX | 2nd RX | 3rd TX | 3rd RX | 4th TX |

4th RX |

Temperature [C]| 49 | 52 | 46 | 46 | 54 | 50 | 49 |
49 |

3.3vee [Vl] 3.24| 3.29 | 3.27| 3.28| 3.26| 3.30| 3.26 |
3.31 |

33

2.5VCC [V]| 2.42 | 2.40 | 2.44 | 2.42 | 2.42 | 2.44 | 2.44 |

How to the read the table below:

= FLX Llink endpoint OK (no LOS)

- = FLX link endpoint not OK (LOS)

First letter: Current channel status

Second letter: Latched channel status

Example: #(-) means channel had lost the signal in the past but the signal is present
now.

Latched / current link status of channel:

| ¢ | 1| 2| 3| 4| 5| 6| 7| 8 | 9 | 10
|11
|======|======|======|======|======|======|======| ======|====== | ====== | ====2==| =======
Ut TH 1 0 1 0 | 0 1 =) 1) [) 1) 1) 1 6 1 =) |)
St B 1 =00 1) | =00 1 =) [) |) | %60 | 600 | 60 | o) | 30
ot T8 1 =03 =3 1= 1= 1= 1 [=] =3 1 =3 | =) | =6
o R 1 =03 1| =3 | =3 | =) [=) [=) [3 [=) | = | = | =)
S TH 1 =0 1 =0 | =3 | =) [=) [=) [3 [) | =) | =) | =)
S B 1 =0 1 =00 | =) 1 =) [) [) 1) 1) 1 G | =) | =)
BT) 1) | 0 1 =) 1) [) 1) 1) 1 G 1 =) | =)
:4tﬁzé% i) 1= L =)] =) [) =) =) [=) | =)

If your physical link is working correctly you should see loss of latch status '# for the relevant
MiniPOD RX (receive) or TX (transmit). For a physical map of MiniPOD locations please consult
Appendix B.

5.7.4 Physical Link Layer Status: FLX-182

The command flx-info ffly replaces flx-info pod. However no optical power is reported as
FireFly modules do not provide a reading.

5.7.5 Physical Link Layer Status: FLX-709

In order to check the status of your physical connections for a VC-709 (which are SFP-based) run the
following:

flx-info SFP

34

Look for the line marked 'Link Status' in the output:

$ flx-info sfp
This is an FLX-709

Link Status | Ok 0Ok Ok Ok

5.7.6 Logical Link Layer Initialisation (All FLX cards)

After flx-init links should align. The alignment status can be checked with:

flx-info link

Re-alignemnt can be triggered calling f1x-init again. The results should look like this (this is for a

FLX-712 with 24-channel firmware):

$ flx-info link
Card type : FLX-712
Firmw type: GBT

Link alignment status

Aligned | YES YES YES YES YES YES YES YES VYES YES VYES VYES

For GBT mode firmware: If this looks correct your GBT links should now be fully operational
(configured, trained and locked).

Before attempting to transfer data please ensure you have followed the guide in Section 6.1 for
details on how to configure your E-links.

35

0 :'table: 5

36

6. Basic Tools

The FELIX software tools suite comprises both high and low level tools. At the highest level, the
felixcore or felixstar application is responsible for communication and bulk dataflow in a full
slice system. At a lower level, the suite provides a number of command line based tools and a GUI
based configuration tool, to facilitate system configuration and testing. This chapter describes these
low level tools such that users will be able to effectively communicate with, configure and test their
system.

If you are looking to set up a full system slice with data output to a network please consult Section 7
which describes readout applications. This section assumes that you have set up your FELIX
software environment as described in Section 5. None of the tools in this section should require
superuser privileges to run. All tools presented below work in both GBT and FULL mode, and for
FLX-709 and FLX-711 or FLX-712 cards, unless otherwise stated. Where special parameters are
needed to distinguish modes this will be indicated.

A quick reference for all tools to be covered in this section is presented in Table 6.2 .

the FELIX software tools suite contains a number of tools which are considered for
developer use only. All tools which are rated for use by front-end users are listed
in this document. Use of any other software is not recommended unless asked to
do so by a FELIX developer.

Table 6.2 List of all recommended user tools. For more information on each please click the tool name to
visit the dedicated section of this chapter.

Low Level Tools

flx-info View various FELIX hardware and firmware information and status.

flx-config View and modify low-level firmware parameters by reading and writing
FELIX firmware registers.

flx-init Initialise FELIX, as well set as low level GBT and clock/jitter cleaning
parameters.

flx-reset Reset FELIX or a specific component.

flx-pod Display or enable/disable individual MiniPOD channels.

fcap View FELIX firmware E-link configuration capabilities and some other

felix-cmem-free
flx-busy-mon
flx-dma-stat
flx-irg-counters
Dataflow Tools

fdaq

firmware properties.

Manually deallocate memory in CMEM buffer.

Monitor a FELIX card’s BUSY signal.

Display the status of a FELIX device’s DMA controllers (expert tool).

Inspect or reset FELIX card interrupt counters (expert tool).

Receive data from a single FELIX device and save to files or perform sanity
checks.

37

Low Level Tools

fdagm

fupload

Receive data from multiple FELIX devices and save to files or perform sanity
checks.

Upload specific data patterns or data from file to a front-end E-link via a FELIX
device.

FELIX Configuration Tools

elinkconfig
felink
fereverse
fgpolarity

feconf

femu
ffmemu
fttcemu

fttcbusy

fexoff
fexofftx

feto

febrc
fflash

fflashprog

GUI for link and data generator configuration and configuration file creation.
Calculate E-link IDs given inputs with differing formats.

Reverse the endianness of data passing through an E-link.

Switch 0/1 polarity of all data coming or going through a specific GBT link.

Upload link and/or data generator configuration to FELIX from the command
line.

Status and control of the FELIX data generators.
Status and control of the data generator of the FMEMU firmware.
Status and control of the FELIX TTC data generator.

Status and configuration of FELIX E-link TTC-BUSY settings, as well as other
BUSY-related settings.

Enable/disable the XOFF feature of FULL mode links.
Generate an XOFF or XON on FULL mode links.

Status and configuration of FELIX timeouts (global, TTC and link data, a.k.a
instant timeout).

Configure E-links FromHost broadcast settings.

Load a firmware image from a FLX-712 card’s flash memory into the card’s
FPGA.

Program or verify firmware images in FLX-712 onboard flash memory.

General Debugging Tools

fcheck

fedump

Run configurable sanity checks on data from a file from fdaq or dump
selected data chunks or blocks to screen.

Dump data blocks directly from a FELIX device (or selected E-link) to screen.

GBTX and lpGBT Configuration Tools

fice

flpgbtconf

fgbtxconf

fscai2cgbtx
GBT-SCA Tools

38

Read or write GBTX or IpGBT chip registers via the (Ip)GBT-link IC channel.

Read or write IpGBT chip registers or register bit fields by name or address via
the IC channel.

Read or write GBTX chip registers or register bit fields by name or address via
the IC channel.

Read or write GBTX registers via a GBT-SCA 12C channel, a-la fice.

Low Level Tools

fec Demo control and communication with a GBT-SCA chip (GPIO, ADC, DAC
and/or 12C).

fscaid Read and display a GBT-SCA chip ID.

fscaio Read and write GBT-SCA GPIO lines.

fscaadc Read out GBT-SCA ADC input channels.

fscadac Read and write GBT-SCA DAC output channels.

fscai2c Read and write to I2C devices connected to GBT-SCA I2C channels.

fscads24 Read out a 1-Wire 64-bit ID chip connected to a GBT-SCA GPIO pin (demo).

fscajtag Program a bit-file into a Xilinx FPGA connected to a GBT-SCA JTAG port.

fxvcserver Interface Vivado to a GBT-SCA chip’s JTAG port and connected Xilinx FPGAC(s).

fscareply Parse and display a GBT-SCA reply given as a sequence of raw bytes.

Tools for IpGBT Control and Monitoring Channels

flpgbtio Read and write IpGBT GPIO lines via the IpGBT IC channel.
flpgbti2c Execute I12C operations on an lpGBT 12C Master via the IpGBT IC channel.
flpgbtds24 Read out a 1-Wire 64-bit ID chip connected to an IpGBT GPIO pin (demo).

6.1 FELIX E-link Configuration with elinkconfig

Before FELIX can be used to transfer data its input and output links must be configured. The link
configuration for a given FELIX card can be accessed and modified using the E-link configurator
application called elinkconfig. This is a GUI based tool to compile and save an E-link configuration
or to inspect and/or edit the E-link configuration read from a given device, and to optionally write
the configuration and/or corresponding emulator data contents to a selected device (a FLX-712 card
consists of 2 devices). The tool supports GBT, IpGBT and FULL mode types of links.

the link configuration when read from a device must be manually refreshed every
o time a FELIX FPGA is reprogrammed, including power-cycling of a host, or after
having executed flx-reset to reset the registers to their defaults.

To run the elinkconfig application issue the following command:
elinkconfig&

The main configuration panel similar to the one shown in Figure 6.1 will appear (here the panel
reflects the configuration from a configuration file that was read in).

39

K% FELIX E-link Configurator @ seudre - O *
FLX-device: | 0 (712, GBT) - | | Read Cfg | TH_FanOut...| |FH_FanOut...| | Timeout.. | Clock... | Stream IDs Advanced
File: | Open.. || Save.. | juser/nag/projectsfelix/software/elinkconfig/rms-static.yelc || Extra. |
Link |0 |2/ ® GBT (FULLmode () IpGBT | Replicate.. || Repl2 All | Use link 'EMU' to configure Emulator Generate/Upload... |
TTC-to-Host (600) Select TTC Clock Truncation (per link): HDLC

Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4 Egroup O Egroup 1 Egroup 2 Egroup 3 Egroup 4
| 2bit - [2-bit - || 4-bit [4abit - 8-bit | Lc(ag | 2-bit - | 2-bit - | 2-bit - [2-bit - | 8-bit | e (2g)
vi007 | v oof o - | | (€0 ~-jmco ~jmco ~|mmco ~||TC0 ~|fpc |
|HDLC ~ || |8blob ~ | v/ 007 V| oof 017 01f
e | — IC (29 IC (29
Epath 7 Epath 7 016 L (22) [wpLe ~ || [brob ~ ||| «| = (29)
|8b1ob ~ || {8blob ~ | Epath 7 Epath 7 Epath 7 Epath 7
v 006 v 00e Epath & Epath 6
HOLC ~ | |8b10b - ‘ v 006 v/ 00e 016 0Ole
Epath 6 Epath 6 v 024 HOLC ~ [[/|8blob ~ ||| ~ Il -
- v 024
|8blob ~ | Epath 6 Epath & Epath & Epath 6
v 005 v ood T Epatna |8bl0b ~ |
HoLe ~ || [8brob + v/ 005 v 0od 015 o1d pr——
Epath 5 Epath 5 014 0lc HDLC ~ |[/|8blob ~ ||| ||l -
|sblob ~ |||eblob ~ | Epath 5 Epath 5 Epath 5 Epath 5
v 004 v 00c " Eoath2a | Eoatha
— (= | G v/ 004 v/ 0oc 014 01c
HDLC ~ ||/|8blob ~ |
Epath 4 Epath 4 HDLC ~ ||||8blob ~ ||| |l =
Epath 4 Epath 4 Epath 4 Epath 4
v 003 v 00b
et S et v/ 003 v| 00b 013 01b
HDLC ~ || 8b10b - | lwpLe ~ || [eb10b ~ ||| = -
Epatn 3 Epatn 3 R Epath 3 Epath 3 Epath 3 Epath 3 S
|8bl0b ~ |||8b10b ~ | | Egroup0 | = - £ £ | Egroup0 |
vloo2 CalLE) Epath 2 Epath 2 Egowp1 | | Y902 v/ 00a 012 01la egowp1 |
HDLC ~ || |8blob - | e [HDLe ~ [|/|8b1ob ~ ||| -l - il
Epath 2 Epath 2 v/ 020 | Egroup2 | v/ 020 | Egroup2 |
Epath 2 Epath 2 Epath 2 Epath 2
001 |7 oo (8b10b ~ ||| Egroup3 | [biob ~ ||| Egroup3 |
Epath O |W| v 001 v 009 011 019 Epath 0 | Egroup 4 |
HDLC = | |8b10b - ‘ o010 015 B |HDLC - | |8b10b - | | - | | - | -
Erain d Epalind |ﬁ| |ﬁ| | Replicate.. | Epath 1 Epath 1 Epath 1 Epath 1 | Replicate.. |
8bl0b - 8bl0b - B
v/ 000 v/ 008 Epath 0 e | Repl2All || g4 v/ 008 o010 018 | Repl2ll |
|[HDLC - || |8bl0b ~ | Disable | [Hoe ~ [|/|8b1ob ~ ||| Il - |
Epath O Epath 0 | Enable | Epath 0 Epath 0 Epath 0 Epath 0 | Enable |

ToHost Link 0 ®) E-mode | DMA index FromHost Link 0

FELI x v4.7.0 03-APR-2023 (tag: felix-04-01-01-rc3-56-g7212770) RM-5 | Quit |

Figure 6.1 Main panel - elinkconfig

The elinkconfig interface is split into three main areas. At the top there are two control bars to set
FELIX card parameters, open/save configuration files as well as link selectors. The left main panel
displays the from front-end to FELIX/host configuration for the selected link.

40

K% FELIX E-link Configurator @ seudre - O *
FLX-device: |0 {712, GBT) ~ || Read Cfg | | TH_FanOut...| |FH_FanOut...| | Timeout... Clock... Stream IDs Advanced
File: Open... Save... Juser/n48/projects/felix/softwarefelinkconfig/rms-static.yelc Extra..
Link |0 < e GBT FULLmode IpGBT | Replicate.. Repl 2 All Use link "EMU' to configure Emulator Generate/Upload...
[] TTC-to-Host (600) Select TTC Clock Truncation (per link): HOLC

Egroup O Egroup 1 Egroup 2 Egroup 3 Egroup 4 Egroup O Egroup 1 Egroup 2 Egroup 3 Egroup 4
2-bit -~ || 2-bit ~ | 4-bit =~ | 4-bit ~ || 8B-bit ~ v/ EC (28) 2-bit - || 2-bit ~ | 2-bit ~ | 2-bit ~ || 8-bit ~ V| EC (28)
v/ 007 v/ 0of HDLC =~ ety el A et AL A YT e
HDLC ~ 8blob ~ v 007 V| oof 017 01f
Epath 7 Epath 7 016 Ole IC (29) e | [Prep—— . - IC (29)
|8b10b ~ |||8bl0b ~ | Epath 7 Epath 7 Epath 7 Epath 7
v 006 v 00e Epath & Epath 6
HDLC = 8b10b ~ v/ 006 v 00e 016 Ole
Epath 6 Epath 6 vi 024 HDLC ~ |[/|8blob ~ - -
|8blob ~ | Epath 6 Epath & Epath & Epathe || 924
v 005 v ood Epath 4 |8b10b - |
HDLC = 8b10b - v 005 v/ ood 015 o01d Epath 4
Epath 5 Epath 5 014 0lc HDLC ~ || 8blob ~ . .
| 8blob - | | 8blob - | Epath 5 Epath 5 Epath 5 Epath 5
v 004 v 00c
e G v/ 004 v/ 0oc 014 01c
HDLC -~ 8blob ~
Epath 4 Epath 4 HDLC ~ [|/|8bl0b ~ M M
Epath 4 Epath 4 Epath 4 Epath 4
v 003 v 00b
v 003 v 00b 013 01b
HDLC ~ 8blob ~
Epath 3 Epath 3 012 Ola BINRETRA| | Mk M M
prpwmm | | p—— Epath 3 Epath 3 Epath 3 Epath 3
e e |8b10b M | |8b10b M | Egroup 0 Egroup 0
a Epath 2 Epath 2 o v/ 002 v/ 00a 012 0la Erns
HDLC ~ || [sblob ~ <hemly <hemly
Epath 2 Epath 2 v/ 020 Egroup 2 HDLC - J}|(8b20b ~ M “!| v 020 Egroup 2
—_— Epath 2 Epath 2 Epath 2 Epath 2
|8b10b ~ ||| Egroup 3 [8b1ob ~ ||| Egroup3
v 001 v 009 —
Epath O Egroup 4 v 001 v 009 011 019 Epath 0 Egroup 4
HDLC -~ 8b10b = HDLC =~ 8blob ~ b v
Epath 1 Epath 1 | | Replicate.. Epath 1 Epath 1 Epath 1 Epath 1 Replicate..
8b10b ~ 8b10b ~
v/ 000 v/ 008 Epath 0 Epath 0 Repl 2 Al v/ 000 v/ 008 010 018 ReplZjal
HDLC ~ || |8blob ~ Disable HDLC ~ || |8blob ~ - -
Epath O Epath O Enable Epath 0 Epath 0 Epath 0 Epath 0 Enable

ToHost Link 0 ¢ E-mode DMA index FromHost Link 0

FELI X va.7.0 03-APR-2023 (tag: felix-04-01-01-rc3-56-97212770) RM-5 Quit

Figure 6.2 elinkconfig panel split. The uppermost panel (purple box) controls global settings and GBT
selection. The left main panel contains the E-link configuration for the from front-end to host direction, the
left main panel the from host to front-end direction

6.1.1 Global Panel

The elinkconfig 'global' panel, shown with explanations in Figure 6.3 provides the top level
interface for the tool. Here you select from which FELIX device within your system you wish to
read out its (link) configuration, or read and set a number of global settings (using the top row of
buttons; note that these settings are then immediately made in the selected device). Note that a FLX-
712/FLX-182 card consists of 2 separate FELIX devices (as shown in the FELIX device selection drop-
down menu).

Starting from elinkconfig version 4.5.0, reading a FELIX device’s configuration includes its
'firmware configuration' registers, which define, among other things, which E-link widths and
modes are supported by the firmware for different E-groups; this is then reflected in the
elinkconfig user interface in the options available to the user: certain width and mode options for
certain E-groups may be disabled in the drop-down menus shown in the sections below. As soon as
you select a different FELIX device or link mode all available options become re-enabled, and Read

41

Cfg pushbutton text turns to bold face again to indicate the configuration shown in the panel does
not necessarily match the FELIX device’s configuration.

In the global panel you select a link number to display and/or to configure in the ToHost and
FromHost panels (presented below), as well as an associated link mode (note that the link mode is
in fact a global card parameter; different links can not have different modes). It is possible to open
previously saved configuration files and save new ones. Also there is a button to open the dialog to
write the selected or manually configured link configuration to any of the FELIX devices in your
system. There is a checkbox to enable truncation of data chunks on HDLC E-links, so that chunks
with a size larger than can be expected from a GBT-SCA device (which is 12 bytes maximum) from
this type of links are suppressed (unconnected links may produce random data).

) Read link Open FELIX Show/hide
An FLX—?lJ_'. card Select FELIX device configuration ~ Opendatapath data timeout Open FELIX StreamID Show/hidesome
has 2 devices to operate on from device fan out control dialog clock source indication bits ‘advanced’ info
(using top row buttons) (Bold font means: click control dialog selector dlaIOg (ToHost direction)
1(712, GBT) to update configuration shown)
v /
Open/fsave link FLX-device: |0 (712, GBT) ~ | Read Cfg | TH_FanOut...| FH_FanOut... | Timeout... Clock... Stream IDs || Advanced
Conﬂgurat_lon—plﬁ'le: Open... Save... Juser/n48/projects/felix/software/elinkconfigirm5-static.yelc | Extra..
from/tofile -
Select input = Link [0 3 | s GBT FULLmode IpGETl Replicate.. = Repl 2 All Use link 'EMU’ to configure Emulater Generate/Upload.
link to display and TTC-to-Host (600) Select TTC Clock Trundhtion (per link): HDLC
configure
i . i i To add additional
i Selzc‘c link Replicate link Replicate link Enable/disable Open configuration registersettings
Enable/disable mode/type configuration configuration chunktruncation ~ UPload/ data generator ;e configuration
TTC-to-Hostchannel fchecked selectsTTCclock, across selected across all on HDLC E-links setup dialog (file)
; ; -
(there’s one per device) ifnotcheckeddoesnot other links other links

change current clock selection

Figure 6.3 elinkconfig global panel.

From the global panel it is possible to access a number of sub-panels using the buttons at the top of
the panel, as indicated in Figure 6.3 . These give access to more advanced global configuration
options, details of which are presented below.

The global panel also contains a tickbox to enable the socalled TTC-to-Host channel, a virtual E-link
carrying for each TTC Level-1 Accept a packet containing the corresponding TTC information.

6.1.1.1 Data Path Fan Out Selectors: TH FanOut and FH_FanOut

FELIX operates two separate data generators within its firmware, one attached directly to the data
path going to the host, and one attached to the path going towards the front-end. While the
generators are attached, they have mutually exclusive access to the data path with regular non-
emulated data in both directions. To avoid the two data types colliding only one type may access the
path at a time. The fan out selectors control this access by ensuring that only internally emulated
data or external data can be configured to pass at any one time. The FELIX applications and tools
configure these selectors automatically, but for the purposes of user testing it may be necessary to
set these values manually. The selectors are accessed via the TH_FanOut (to host) and FH_FanOut
(from host) buttons in the global panel. The resulting dialogs are presented in Figure 6.4 .

42

K GET ToHost FanOut Select: Ezemulator x

GBT:| OE 1E 2E 3E 4E 5E 6E 7E BE 9E 10E || 11E Locked
None Cancel oK

E:*-i GET FromHuost FanOut Select: E=ernulator >
GBT:| 0O 1 2 3 4 5 6 7 8 9 10 11 Locked

Figure 6.4 Fan out control for to-host (top) and from-host (bottom) directions. The setting for each link is
displayed separately (in this case for a 12-link FLX-712 device, i.e. for a 24-link FLX-712 card). It is also
possible to (soft)lock the settings using the dedicated checkbox, causing a number of tools to not touch these
settings when the lock is set.

In order to switch the selector value open the required dialog and click on the link number you
wish to toggle. A link displayed with its number alone is set to external data, if a link is displayed
with its number plus 'E' it is in emulator mode. You can set/unset all values at once using the All and
None buttons provided.

0 Changes made here are immediately propagated to the selected FELIX device once
you select OK.

In some cases a user may wish to prevent other applications from automatically changing these
settings. For example, if a specific link is nominated for TTC information transfer it may be
convenient to fix this to external data for the duration of a test. In this case it is possible to lock the
values by selecting the locked check box. Applications will then refrain from changing these settings
until the card is reconfigured from this interface or the FPGA is reprogrammed. More information
on configuring TTC transfer to the front-end are available in Section 6.1.3 below.

6.1.1.2 Data Timeout Control Dialog

FELIX offers the facility to time out pending incoming data after a configurable window from
receipt of the first related packets. This is applicable for both regular and TTC data (in the to-host
direction). Should data time out then all available blocks are transferred to the host. The timeout
feature is enabled by default, but can me modified or disabled/re-enabled via the control dialog
accessible by selecting the Timeout button in the global panel. This will open the dialog shown in
Figure 6.5 . From here it is possible to disable/enable both regular data and timeouts on the TTC-to-
Host channel using the check boxes, as well as modify the timeout window sizes. This should
typically only be done under the guidance of a FELIX developer for debugging purposes.

o Changes made here are immediately propagated to the selected FELIX device once
you select OK.

43

k% Datablocks Time-out Configuration@turano by

V| Time-out enabled: 65535 |5 x 25ns

v | TTC time-out enabled: 4095 |5 x 25ns

Coma]| o

Figure 6.5 elinkconfig data timeout control dialog.

EC and TTC-to-Host data are always subjected to an immediate time-out,
independent of the global time-out. In addition it is possible to enable a time-out

o per E-link independent of the global time-out setting, which may be important for
E-links carrying irregular and small data fragments such as those connected to
GBT-SCA devices (for this see tool feto).

6.1.1.3 Clock Source Selection Dialog

As mentioned in Section 3.6.1, FELIX supports two different firmware clock sources. It is possible to
switch between these sources from elinkconfig from the clock source selection dialog, accessible
by clicking the clock button in the global panel. The selection dialog is shown in Figure 6.6, and is a
simple two button toggle between TTC and local clock. The current status of the PLL lock is
indicated as well.

o Changes made here are immediately propagated to the selected FELIX device once
you select OK.

Please also consult Section 3.6.3 before making any clock changes, to ensure you correctly configure
your FELIX card’s jitter cleaner post-clock change to ensure continued stable operation.

L% Clock Configuration@turano x

TIC '@ Local v
ox

Figure 6.6 elinkconfig clock source selection dialog.

6.1.1.4 Register Settings Dialog

The .jelc configuration file format has an entry to contain extra FELIX device register settings in
addition to the settings associated with the link and e-link configuration.

Click the 'Extra’ button in the global panel to open the settings dialog, shown in Figure 6.7 . The
dialog allows to interactively add settings by entering a register or bitfield name and a value. The
name should be one of the defined names as can be seen in the list produced by command flx-
config list (see flx-config).

If a name entered is not unique, potential name options to choose from will be shown. A value
entered is checked to fall within the allowed range of the named item. After entering multiple
settings their order can be changed at will (Note: the settings will be applied in the order shown,

44

after the link configuration has been done), settings can be removed or new settings added, using
the buttons in the dialog. Changes are then confirmed by clicking the 'OK' button. The settings are
saved in the configuration file.

Note that elinkconfig as well as feconf have an option to exclude applying these extra settings,
when present, when configuring a FELIX device.

L% Additional register settings@seudre x
status-leds [Dxf‘ﬂ l [+ l
MName Value
1|5TATUS-LEDS OxFF a
2| TIMEOUT-CTRL-ENABLE 0x0 ﬁ
3| TIMEQUT-CTRL-TIMEOUT Ox1234 a
Cancel oK

Figure 6.7 elinkconfig register settings dialog.

6.1.2 ToHost Panel

The to-host panel allows for configuration of the currently selected link (GBT or FULL mode) in the
to-host direction. The type of panel to show can be selected in the global panel as described in
Figure 6.3 . In the GBT case it is possible to configure the complete set of E-links associated with this
link, split up by E-group, as well as the EC (External Control) and IC (Internal Control) channels. For
each E-link two additional parameters can be configured, selected by means of the two
radiobuttons at the bottom of this panel: the type of E-link encoding to be used (button 'E-mode"),
and the assignment of a DMA (data) stream index to the E-link determining the data stream the E-
link’s data will be part of (button 'DMA index'); by default the index is DMA #0 and usually the
FELIX firmware provides 4 different streams (data endpoints) E-links can be individually assigned
to. For example, it could make sense to assign all E-links carrying monitoring, control and
configuration traffic only to a separate stream, in order to separate this type of information from
mormal' data as early as possible.

If the Stream IDs tickbox in the global panel is ticked the panel shows Stream ID indication
tickboxes. It is a bit per E-link on the device that can be set to indicate e.g. to data-acquisition
software that the protocol on the corresponding E-link features a Stream ID, which can then be
taken into account by the software. The setting itself does not have any effect on the workings of the
FELIX device. An annotated screenshot of an example of this panel is presented in Figure 6.8 .

45

The hexadecimal number

Select E-link width per E-group

identifies the E-link =/ 005

Link encoding e———p HDLC ~

dropdown menu

direct

8b10b

or
DMA/stream selection

dropdown menu

l

Select dropdown menu
contenttype — ToHost Link 0

Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
2-bit <~ | 2-bit =~ | abit <~ | abit <~ 8bit -
v 007 V| 00f
HDLC ~ 8bl0b ~
Epath 7 Epath 7 016 Ole
|8biob ~ |||8blob ~ |
v| 006 v/ 00e Epath 6 Epath 6
HDLC =~ |||8blob =
Epath 6 Epath 6 v/ 024
|8blob ~ |
v/ ood Epath 4
HDLC ~ 8bl0b ~
Epath 5 Epath 5 014 0lc
|sb1ob ~ |||8blob ~ |
v/ 004 v/ 00c Epath 4 Epath 4
8bl0b ~
Epath 4 Epath 4
v/ 003 v/ 00b
HDLC ~ 8bl0b ~
Epath 3 Epath 3 012 0la
|8biob ~ |||8blob ~ |
v/ 002 v 00a Epath 2 Epath 2
HDLC ~ 8bl0b ~
Epath 2 Epath 2 v 020
|8bl0b ~ |
v/ 001 v/ 009 “Epath0
HDLC =~ |||8blob =
Epath 1 Epath 1 o010 018
|8biob ~ |||8blob ~ |
v 000 v/ 008 E— E—
HDLC ~ 8bl10b ~
Epath 0 Epath 0
@ E-mode | | DMA index

v/ EC (28)
HDLC b

v/ Ic (29)

Enable EC and
ICchannels

Stream ID indication

Stream ID «——— per E-link

Epath 7
Epath &
Epath 5
Epath 4
Epath 3
Epath 2
Epath 1
Epath 0

Egroup 0
Egroup 1
Egroup 2
Egroup 3
Egqroup 4

Replicate..
Repl 2 All
Disable
Enable

of selected E-group
(visible when
‘Stream 1Ds’ ticked)

Select E-group for the

=—— button operations
below

{or Stream 1D settings above)

- Apply operation
on selected E-group

Figure 6.8 elinkconfig configuration panel for to-host direction (GBT mode). Various configuration options
and tools are indicated as they appear in the panel.

In FULL mode this panel provides only a few options, as this link mode does not contain logical E-
link subdivisions. This version of the panel is presented in Figure 6.9 . When the 'DMA index'
configuration mode of the link is selected a dropdown menu button appears in the FULL link
allowing assigment of the link data to one of the data streams of the FELIX device.

46

|v| ooo

FULLMODE

Disable

Enable

ToHost Link 0 FULL mode E-mode ‘¢ DMA index

Figure 6.9 elinkconfig to-host panel (FULL mode).

6.1.3 FromHost Panel

The from-host panel allows for configuration of the (GBT) links transporting data from FELIX
towards connected front-end electronics. This panel only exists in 'GBT mode' form as FULL mode is
only a to-host protocol, and any FULL mode firmware will implement from-host links as GBT-type
links.

An annotated screenshot of an example of this panel is presented in Figure 6.10 . A key difference
between this panel and the to-host panel is that the link encoding options include a TTC mode; an E-
link in this mode will send TTC data to the front-end electronics, with the TTC data format defined
by the TTC option selected for the E-link’s E-group (in the drop-down menu directly underneath the
E-group E-link width selection drop-down menu). There are 16 different TTC options to choose
from, although not all are currently defined. For the meaning of the various TTC options, i.e. the
format of the TTC data transmitted, see elsewhere.

Note that for IpGBT links the from-host E-link mode drop-down menu includes additional modes
Strips, Pixel and E’vour (the latter stands for: Endeavour), which only apply to matching FELIX card
firmware flavours.

47

Select E-link width Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
m—p 2-bit =~ | 2-bit =~ 2-bit ~ 2-bit ~ 8-bit -~

per E-group V| EC (28)
UL LLSE A | UL SR UL UL e Enable/disable
For E-links in the E-group Y. 997 v| 00f 017 o1f - EC and ICchannels
setto ‘TTC’ encoding |HDLC - || 8blob ~ hd -4
thiS iS itS SElECtEd Epath 7 Epath 7 Epath 7 Epath 7
‘TTC option’ (0..15) v/ 006 v/ 00e 016 Ole
HDLC =~ | 8blob ~ - -
Epath & Epath &6 Epath & Epath & it
The hexadecimal number P P 8blob ~
] o . — v 005 v/ 00 015 o1
identifies the E-link Epath 4
HDLC =~ | 8blob ~ - -
Epath 5 Epath 5 Epath 5 Epath 5
v/ 004 v/ 00c 014 0lc
Link encoding == HDLC ~ | 8bl0b ~ - -
dropdown menu Epath 4 Epath 4 Epath 4 Epath 4
(available options depend on GBT 7 003 7| 00b 013 01b
or [pGBT; HDLC for 2-bit only)
HDLC =~ | 8blob ~ - -
direct Epath 3 Epath 3 Epath 3 Epath 3 =
8b10b S 0
v/ 002 v/ 00a 012 Ola
e Egroup 1 Select E-group for the
HDLC =~ | 8blob ~ - - .
e v 020 Egroup 2 = hutton operations
Epath 2 Epath 2 Epath 2 Epath 2
8bl0b ~ Egroup 3 below
v/ 001 v/ 009 011 019 Epath 0 Egroup.4
HDLC =~ | 8blob ~ - - =
Epath 1 Epath 1 Epath 1 Epath 1 Replicate.. |] .
= Apply operation
Re .
v/ 000 v/ 008 010 018 F L using
HDLC ~ |||8blob ~ - B [pisable | selected E-group
Epath 0 Epath 0 Epath 0 Epath 0 Enable i

FromHost Link 0

Figure 6.10 elinkconfig configuration panel for from-host direction (GBT mode). Various configuration
options and tools are indicated as they appear in the panel.

6.1.4 Link and Data Generator Configuration Upload Dialog

The to-and-from host panels allow you to put together a complete configuration set for all links
handled by a given FELIX card. Once you have prepared your desired configuration, you can
upload it to a FELIX device in the current host machine by selecting the Generate/Upload button in
the upper panel on the right. This will open the upload dialog, as shown in Figure 6.11 . The GBT
version is shown, but the FULL mode variant is essentially identical, beyond some disabled
developer features. The tickbox concerning register settings is only visible if additional register
settings are present in the configuration.

The E-link mapping for the FELIX data generators can be configured by selecting the EMU link in
elinkconfig. If the option to save to a file is used the emulator link configuration is saved separately
to the rest of the links.

Once the panel is prepared, select Upload from the middle box labeled E-link Configuration to write
your configuration to the device (Note: you have to upload to both devices of a FLX-712 card if you
want to configure the full card). If you also wish to configure the FELIX on-board data generators
for tests in emulation mode select the Upload button in the lower Emulator Data box.

If you are running in emulation mode and wish to change your E-link
o configuration you must remember to upload to the emulator too, every time you

48

upload a change.

In FULL mode and IpGBT mode the data generators only produce FULL mode and
o IpGBT mode data resp. in the to-host direction. In GBT mode GBT data can be
produced in both directions.

E’-‘ Generate/Upload Config and Emulator Data@agogna >

Developer

Output

Select FELIX device Firmware versionin the
- (8 t0 FLX-device: 0 = | FLX712-GBT-4chan-2202250019-GIT:rm-4.10/915 < selected device

forupload actions

Write additional Link Configuration Upload link

register settl.ngs or not L+ (v Additional register settings (2x) K configuration to
(only shown if present) selected FELIX device

Emulator Data (NB: based on link 'EMU' configuration)
Select size (bytes)

=g Chunk size | 60 ~| Data pattern | Incr ~ |ldles 8 =
of generatEd E-width d Rand St 1D, Upload Up|03d firmware
Wi e anaom ream oa A —
data chunks \ i) E data generator
configuration to
] Close selected FELIX device
|
Additional emulator data oPtlons Select generated |} Select number
(hover mouse to show tooltips e of IDLE chars
with more info about individual items) data pattern X55/0x

(incrementing byte | OxFF between chunks
or fixed byte pattern) | gxop

Emulator configuration

Figure 6.11 elinkconfig upload panel. Note that the specified emulator chunk size does not include an 8
byte header which is automatically added.

Once your configuration is uploaded you can then proceed to use the FELIX system as normal, the
new settings will take effect immediately. To avoid unexpected behaviour please avoid
reconfiguring the links while the FELIX device in question is in active use in your system.

6.1.5 Guide to Valid E-link Configurations

The E-link configuration uploaded to a FELIX card is actually a set of instructions to configure a
component known as the Central Router. It is responsible for sending incoming data (in either
direction) to the correct remote end point, as defined by E-link number. For FULL mode there is no
such thing as an E-link, and so the Central Router merely propagates a wide stream of bits across
the link. In the GBT case, E-links are defined as separate logical links within a given physical GBT
link. E-links can have (in the current implementation) three different bit widths, which given the
link clock defines the maximum bandwidth they can sustain. The widths are 2, 4 and 8 bits, running
at 40 MHz. There is currently no support for 16-bit GBT E-links. A GBT link can therefore be
considered as a logical aggregation of low bandwidth links into one high bandwidth transfer. For
full details please consult the official documentation [3].

In Normal mode, a GBT link is 80 bits wide, and this puts an upper limit on the number of E-links. It
is therefore possible to have few wide 8 bit links, a larger number of narrower 2 or 4 bit links, or a
mixture of the two (selected on a per-E-group basis). Should a GBT be operated in Wide mode (not
currently supported) then a further 32 bits are available within the GBT link (i.e. 112 in total),
allowing for more E-links. The structure of a normal mode GBT frame is shown in Figure 6.12 . It is

49

up to the user to decide how much of the GBT width to utilise as per their front-end needs. It is

permitted to leave link bandwidth unused by not assigned E-links to that part of the GBT frame.

GBT frame

(120 bits)
Header IC EC E-group 4 | E-group 3 | E-group 2 | E-group 1 | E-group O FEC
(4 bits) (2bits) | (2bits) | (16bits) | (16bits) | (16bits) | (16 bits) | (16 bits) | (32 bits)

Figure 6.12 Bit structure of a GBT frame, showing E-groups, IC and EC links, as well as GBT header and
Forward Error Correction (FEC) bits.

Within a given GBT link, logical links are subdivided for management purposes into 16 bit wide E-
groups. Each E-group logically contains a combination of E-links up to an aggregate of 16 bits of
width, looking at either extreme this means up to 8 of the narrowest 2 bit E-links at one end, or two
of the widest 8 bit E-links at the other. The E-group is the unit of connectivity around which the
elinkconfig interface is built, with the to- and from-host panels designed around the E-group
granularity of one complete GBT link.

Note that for IpGBT links E-groups are 32 bits wide in the to-host direction and may be configured
as 8-, 16- or 32-bit wide E-links (2- and 4-bit are not available). In the from-host direction the E-
groups are 8 bits wide and configured as 2-, 4- or 8-bit wide E-links.

Looking within the E-group, there is one further layer of link identification to consider. Each GBT
group supports up to 8 logical E-paths (IpGBT up to 4 E-paths). These correspond to the logical
connection end-points which the Central Router supports. In the to-host panel in Figure 6.8 and the
from-host panel in Figure 6.10 this is reflected in the "Epath" labels shown in each of the E-link
selection boxes. Depending on the chosen E-link width in a an E-group certain E-paths are used and
some not (for the GBT and IpGBT 4-, 8- and 16-bit widths and for the IpGBT 32-bit width). The E-path
used for a particular E-link is reflected in the E-link IDs (an 11-bit significant hexadecimal number)
in the E-group, so an E-link ID may not be unique for different E-link widths (for example, certain E-
link IDs may refer to either a 2-bit or 4-bit wide E-link).

Within a given link map, each E-link can be configured to use different encoding formats as per
front-end requirements. This area is still subject to active development, and it is strongly
recommended that users work towards basing systems on 8b10b encoding. For FULL mode 8b10b is
also the default.

There is a known issue with GBTX chips whereby links disconnected from any
front-end source may generate spurious data at random intervals. If using FELIX
with a GBTX it is strongly recommended that any links which are disconnected
from the front-end be deactivated in the FELIX device using elinkconfig. This will
prevent spurious data causing confusion in front-end testing.

A

50

6.1.5.1 Semi-static Firmware GBT E-link Configuration

In the 24-channel GBT mode build, the FELIX firmware does not support fully configurable E-links
due to the need to conserve FPGA resources. The set of configurable E-links in this case is described
below.

To Host From Host

EC link 2 bit HDLC 2 bit HDLC

E-Group 0 2 bit HDLC, 8 bit 8b/10b 2 bit HDLC

E-Group 1 2 bit HDLC, 2 bit 8b10b, 8 bit 2 bit HDLC, 2 bit 8b10b
8b/10b

E-Group 2 4 bit 8b/10b, 8 bit 8b/10b 2 bit 8b/10b

E-Group 3 4 bit 8b/10b, 8 bit 8b/10b -

E-Group 4 8 bit 8b/10b 8 bit 8b/10b

6.1.6 Guide to common configuration tasks

6.1.6.1 Working with E-link configurations stored in files

elinkconfig reads and stores configuration sets in YAML format .yelc files. In order to load a
previously existing configuration set into the tool, select Open from the global panel and choose the
file to be loaded. The GUI will be automatically updated to reflect the new configuration. From here
you can modify the configuration (if needed) by e.g. using the to and from-host panels to
enable/disable E-links. Once your changes are complete you can upload the new configuration to
the FELIX card of your choice using the Generate/Upload button in the global panel. Make sure to
upload both the link and data generator configurations if you wish to use the latter. Finally, you can
save your modified configuration to a file by selecting Save from the global panel.

6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a file

If you are working without .yelc files and wish you modify the existing configuration on a FELIX
device you must first load it into the tool by selecting the device in question via the global panel and
then pressing the Read Cfg button. This will populate the GUI with the configuration currently
active on the device. From here you can modify the configuration as required and upload a new
version to the device (or devices) as advised above. You can also save your (modified) configuration
to a file for later reuse.

Note that after starting up the tool or after modifying the selected device number the Read Cfg
button displays the button text in bold face, to indicate the configuration has not been read from
the device yet and turns to non-bold as soon as it is read. As mentioned earlier, reading the
configuration from a device may alter the E-link width and mode options available in the menus,
depending on the capabilities of the firmware of the device.

6.1.6.3 Configure the to-host Level-1 Accept info E-link (TTC-to-Host E-link)

The FELIX firmware implements a dedicated 'virtual' E-link (virtual, because its source is not an E-
link in the electronic definition), called TTC-to-Host, for the purpose of forwarding TTC Level-1

31

Accept information to the host system for transfer to subscribers on the network. Each FELIX
endpoint (or device) provides one such 'E-link', which is activated by ticking the TTC-to-Host
checkbox in the global (top) panel in elinkconfig, as shown in Figure 6.3 . The E-link ID (number)
on which the data will be transferred is shown there as well and has a fixed value (0x600).

A TTC-to-Host E-link produces a 26-byte or 27-byte L1AInfo data packet containing information
about each Level-1 Accept. The contents of the packet are presented in Table 1 of appendix. More
details on this and other FELIX data structures can be found in the appendix.

6.1.6.4 Configure the from-host TTC E-links

e this section refers to the Phase-I TTC system.

Users may configure any number of from-host E-links for the purpose of transferring TTC
information to their electronics. The TTC data arriving at the FELIX card will be automatically
decoded, and subsets made available to users for relay to front-ends in a configurable manner. The
subsets which can be sent depend on the width of the E-link chosen for the transfer and the specific
'TTC option' selected for the E-link’s E-group.

The currently available options are presented in Table 6.3 , although this can evolve based on user
requirements. For example, 2-bit E-links can be configured as TTC option '0' or '6', For TTC option 0
only the L1A and the full, non-decoded B-channel data stream can be sent. Alternatively, 4-bit E-
links can be configured to send L1Accepts, Bunch Counter and Event Counter Resets, and a choice
of either the non-decoded B-channel data stream or a user defined broadcast bit. Detector groups
should communicate to the FELIX group which bits in which locations they need. If their needs are
not met by an existing option, an option can be added.

Table 6.3 Currently defined TTC options. Brcst[7:2] are the TTC user defined broadcast command bits.
Brest[1] is ECR, Brest[0] is BCR. Bit 0 is the first bit transmitted out.

E-group Dbit7 bit 6 bit 5 bit 4 bit 3 bit 2 bit1 bit 0

TTC

option

0: 2 bits B-chan L1A

1: 4 bits B-chan ECR BCR L1A

2: 8 bits B-chan Brest[5] Brest[4] Brest[3] Brest[2] ECR BCR L1A

3:8bits L1A Brest[3] Brest[2] ECR OCR *1 LOA* Brest[5] Brest[4]

*2

4: 4 bits BCR BCR BCR BCR

5: 2 bits BCR BCRd*

6: 8 bits L1A Brest[3] Brest[2] ECR OCR *1 LOA* Brest[5] Brest[4]
*3 *2

7: 4 bits ECR BCR Xoff L1A

8: 8 bits HGTD Fast Command, 6b/8b encoded

TTC option 3 is as requested by the New Small Wheel and FELIX performs custom functions for

32

several of the input TTC bits, such as stretching to multiple BC’s and copying input bits to more than
one output bit. (Needed for compatibility with a two-level trigger)

Notes for option 7:

*1 TTC Broadcast bit 7 is used to request that FELIX send two consecutive BCR’s, which are used as
OCR (Orbit Count Reset Request).

*2 Brest[2], used for TestPulse, is held active by FELIX for 16 BC’s.

*3 Brest[3], used for SoftReset, is chosen from the six "toggle" versions of the Brcst[7..2] in TTC
option 7. Feature was added in firmware version 4.10

*BCRd is a 1-clock delayed BCR pulse.

*LO0A is a copy of L1A when FELIX is driven with the legacy TTC system.

The broadcast bits[7..2] do not behave as they do for the legacy TTCrx or TTCrq
ASICs. For FELIX, these bits persist only as long as their transmission from the TTC
system is repeated. Whereas for the legacy ASICs, they persist until they are

o transmitted again, whereupon they are inverted. From firmware version 4.10, the
Brest[3] bit in TTC option 7 has been added providing this feature. For details see
FLX-644 From firmware version 4.11, TTC option 8 has been added which is able to
distribute Xoff for FULL mode firmware as an alternative to 8b10b encoded XOFF
transmission.

If the TTC B-Channel bits do not arrive at the expected time with respect to the L1A

o bit, a variable delay of 0 to 15 Bunch crossing cycles can be configured for the B-
Channel. This delay can be set by writing a value between 0 and 15 in register
TTC_DEC_CTRL_B_CHAN_DELAY. For details see FLX-1280

Set a delay of 15 BC cycles to the B-Channel bits of the TTC distribution
flx-config TTC_DEC_CTRL_B_CHAN_DELAY 15

Configuring an E-link to transfer TTC data is accomplished by setting the E-link mode to TTC and
then selecting the TTC option value for the E-link’s E-group. See Figure 6.10 . The value selected
must be valid and compatible with the selected E-link width in that E-group.

6.1.6.5 Configure GBT-SCA E-links to/from host

E-links connected to GBT-SCA ASIC devices are 2-bit wide HDLC-encoded links. This type of E-links
are designed to carry slow-control information to and from any desired front-end location. Users
may set any number of 2-bit E-links (in either direction) into this mode. Note that the "EC" (External
Control) E-link is not restricted to be an HDLC E-link but can be configured as a 2-bit 8b/10b E-link
as well. Communication with a GBT-SCA ASIC requires both a to-host HDLC E-link and a from-host
HDLC E-link enabled and connected to the GBT-SCA ASIC. They are usually, but not required to be,
in corresponding positions in the E-groups. FELIX performs the HDLC encoding and decoding.

o An OPC-UA server and client for the GBT-SCA ASIC are provided to allow high level
communication with the various GBT-SCA’s I/O channels by user software.

33

https://its.cern.ch/jira/browse/FLX-644
https://its.cern.ch/jira/browse/FLX-1280

6.1.6.6 IC channel

The GBT IC channel is a 2-bit wide channel in the GBT protocol dedicated to control of the GBTX
chip at the remote end of the link, i.e. to read from or write to its registers. Provided the GBT link is
up, this channel is used for additional configuration of GBTX registers. In a FELIX device both IC to-
host and from-host 'E-links' must be enabled for a user to gain access to his front-end GBTX devices.

6.2 Low Level Tools

The following section covers some general tools which allow you to monitor the state of your FELIX
system, as well as make configuration changes and reset the system as necessary. All tools provide
more detailed descriptions of their functionality through their help output, accessible by running
the tool with option -h.

6.2.1 flx-info

The flx-info application is a command line tool which can print to the screen a range of monitoring
and configuration information for your FELIX card(s). By default you will be presented with some
system version and health status, as well as a basic link description. To access this default printout
run the following command:

flx-info

This will give output similar to that what is shown below, including general information such as the
firmware revision GIT tag and firmware mode, e.g. 'GBT' or 'FULL'. To produce more verbose output
pass option -v to the tool.

> flx-info
General information

Card type : FLX-712

Firmware type : GBT

Reg Map version : 4.10

FW version date : 22/02/24 15:43

GIT tag : rm-4.10

GIT commit number : 915

GIT hash : 0x00000000e4c@ab59

F/W partition jumpers : 3
Number of interrupts : 8
Number of descriptors : 2

Number of channels 1 12

Number of endpoints : 2

GBT Wrapper generated : YES

MAIN clock source : TTC fixed
Internal PLL Lock . YES

Output of 1spci:

05:00.0 Communication controller: CERN/ECP/EDU Device 0428
06:00.0 Communication controller: CERN/ECP/EDU Device 0427

54

TTC (ADN2814) status

TTC optical connection is up and working

Apart from this output of general information about the FELIX card and its on-board firmware, flx-
info has several 'command' options to obtain status information about various parts of the
hardware and firmware on the board, for example the MiniPOD™ devices status, various board
voltages and temperatures (from onboard LTC2991 devices [15]), the status (aligned or not) of links
and E-links and status information of various other devices (note that some information is specific
to a certain type of FELIX card; the tool will indicate this).

For a complete list of available options run flx-info with option -h. This will produce the output
shown below:

Help text of flx-info:

Usage: flx-info [OPTIONS] [COMMAND]
Displays information about an FLX card.

Options:

-c <number> Use card indicated by <number> (default 0).

-s <secs> If necessary wait up to <secs> seconds for free (I2C) lock,

accessing the card for actions involving I2C ops (default: 5

secs)

-h Display help.

-V Verbose mode.

-V Display the version number.

-7 Clear the TTC/LTI counters (commands TTC or LTI),

or clear latched signals and error counters
(commands LINK, ELINK or LINKRESET).
-F Show FEC error counter increments during one second,
in addition, if any errors (with command LINK).
Commands: (case-insensitive)

COUNT Display the number of FELIX devices installed in the host.
CARDS Display the number of FELIX cards installed in the host.
FPGA Display the status of the FPGA.
POWER Display the status of the power monitoring devices
(LTC2991 or IN226/TMP435).
POWERSEQ As '"POWER', and in addition some FLX-182/155 LTM4700 and ADM1x66
info.
POD Display the overall status of the MiniPODs.
PODTEMP or PODVCC Display temperature and voltage (VCC) readings of the MiniPODs.
PODPOWER Display optical power readings of the MiniPODs.
PODPOWERRX Display optical power readings of the RX MiniPODs only.
TTC or LTI Display info from TTC or LTI related registers.
FREQ Display the RXUSRCLK frequency.
LINK (or GBT) Display the channel alignment status
(plus PLL LOL and FEC error counters; see option -F).
ELINK Display the E-link alignment status

55

(plus 'PATH' error counters).

LINKRESET Display the channel auto-reset counters.

ADN2814 Display the ADN2814 register 0x4.

CXP Display the temperature and voltage from CXP1 and CXP2.

SFP Display info from the Small Form Factor Pluggable transceivers.
DDR3 Display the values from DDR3 RAM memory.

S15324 Display the SI5324 status (on FLX-709 only).

SI15345 Display the SI5345 status.

LMK03200 Display the LMK03200 status.

ICS8N4Q Display the ICS8N4Q status (on FLX-710 only).

FFLY or FIREFLY Display status of the FireFly modules (FLX-182/155 only).
EGROUP [<ch>] [RAW] Display the values from EGROUP registers:
if no channel number <ch> is specified, display all available,
using hexadecimal notation if RAW is specified.

LSPCI Output of 'lspci | grep -e Xil -e CERN'.
ALL Display all.
6.2.2 fcap

The fcap tool provides some information additional to what can be obtained with flx-config, in
particular the E-link configuration capabilities of FELIX GBT firmware. The firmware has a per-
Egroup and per-direction setting for E-link configuration. Here’s an example of the output of fcap:

> fcap

Firmware : FLX712-GBT-12chan-2006041630-GIT:rm-4.9/244
Trailer : 16-bit

Blocksize : 1024

(FromHost:YES DirectMode:NO Xoff:NO TTCemu:YES)

E-1ink configurability:

Egroup | ToHost | FromHost
0 8,HDLC HDLC
1 2,8,HDLC 2,HDLC
2 4,8 2
3 4,8 -—-
4 8 8

Per E-group is shown what width and type of E-links can be configured, in both the to-host and
from-host directions. For example '8' here means only 8-bit 8b10b-encoded E-links are possible for
that group, '2,HDLC' means both 2-bit 8b10b-encoded or HDLC-encoded E-links can be configured
for the group, 'HDLC' means the E-group consists of 2-bit HDLC E-links only. Individual E-links
always can be disabled or enabled.

6.2.3 flx-config

The flx-config tool allows users to read and modify FELIX control and configuration registers from
the command line. This should normally only be done on advice from a member of the FELIX
development team. Other features are also available, but these should be considered for experts

36

only unless advised otherwise by the development team. The two primary features users will use
will be the 'list' and 'set' and 'get' features. List mode will dump the values of all known FELIX
register items to the screen, including the address of the register containing the item (a register
may contain multiple individual items), whether the item is readable and/or writable, the bits in the
register the item occupies, its name, its current value and a short description of the item. This will
be a large amount of output, but can be searched e.g by piping it through more or through grep with
a keyword to get the desired information. To run list mode execute the following command:

flx-config list
To change a given register bitfield value (or item):
flx-config ITEMNAME <val>

In this case ITEMNAME corresponds to the register bitfield to be changed and <val> to the new
value be stored. Once set you can use list mode to confirm the change, or read the item explicitly, as
follows:

flx-config ITEMNAME

If the given ITEMNAME does not correspond exactly to a defined item, a list of items to choose from
will be displayed containing the given name as a substring, if any. Item names are case-insentive
and '_' characters may be replaced by '-'.

6.2.4 flx-init

The flx-init tool resets the GBT wrapper and transceiver, initializes the onboard clock generator
device and resets the onboard optical modules, and should be performed every time the FPGA is
reprogrammed (including in case of loss of power). The tool should also be run if the GBT fibres are
disconnected at any point before attempting to transfer data once again.

To run the basic initialisation issue the following command:
flx-init

If you wish to use more features (if instructed by a member of the development team), consult the
help dialog shown below.

Help text of flx-init:

Usage: flx-init [OPTIONS] [<yelc-filel>] [<yelc-file2>]
Initializes an FLX card.

Options:
-c <number> Use card indicated by <number> (default: 0).
-h Display help.
-V Display the version number.
-V Display verbose output.
-E Execute the command even if resources are locked.
-L Set clock to 'Local' (default: leave-as-is).
-T Set clock to 'TTC' (default: leave-as-is).
-5 <secs> If necessary wait up to <secs> seconds for locks to be freed

when attempting to open the card (default: 5 secs).

57

6.

GBT calibration options:
-a ONE|CONTINUOUS Select alignment type (default: ONE).

-t FEC|WideBus

Select transmission mode (default: FEC).

Clock configuration options:

-I <input_sel>

The value given is written to register HK_CTRL_FMC_SI5345_INSEL
before Si5345 initialisation;
valid <input_sel> values are (default: 0):

0: FPGA (LA@1), 1: FMC 0SC, 2: FPGA (LA18)
Read and display Si53xx chip registers (does not init anything),
i.e. Si5324 (for a 709) and/or Si5345 (2x for a 182 or 155)

E-link configuration with .yelc files <yelc-fileX>:
Provide a filename per FLX device to configure.
Example: to initialize and then configure both devices of the *second* FLX-712 card
in a system (first file for 1st device of the FLX-712, second file for the 2nd

device):

flx-init -c1 1pGBT-8bit.yelc 1pGBT-16bit.yelc
To confiqgure only the first device, provide a single file name.

2.5 flx-reset

The flx-reset tool makes it possible to selectively reset components of the FELIX firmware, or the
complete board, as needed given the situation. This should only be done if advised by a FELIX
development team member. To see the list of available parameters please consult the help output
shown below:

Help text of flx-reset:

38

Usage: flx-reset COMMAND [OPTIONS]
Tool to reset various resources on the card.

Commands:
DMA
REG | REGISTERS
SOFT
FH | FROMHOST
GTH

-q <n>
LINK

-r <n>

-t <>
ADC| ADN2814
ALL

Options:
-d <number>

Resets the DMA part of the Wupper core.

Resets the registers to default values.

Global application soft reset.

Central Router FromHost reset.

Reset links RX (for FULL mode F/W only).

operates on register GBT_SOFT_RX_RESET_RESET_ALL).
The individual quad (0..11) to reset (default: all).
Reset a link or links (RX and/or TX; default all RX;
operates on registers GBT_[RX|TX]_RESET).

Individual RX link (0..47) to reset.

Individual TX link (0..47) to reset.

Reset the ADN2814 (not on FLX-182/155 or FLX-128).
Do everything. (Note: use -c, not -d:

resets the card and the resources of all devices of that card).

Use device indicated by <number>
(applies to commands DMA/SOFT/REGISTERS; default: 0).

-c <number> Use card indicated by <number> (default: 0).

-E Execute the command even if resources are locked
-5 <secs> If necessary wait up to <secs> seconds for locks to be freed
when attempting to open the card (default: 5 secs)
-h Display help.
-V Display the version number.
Note:

Use -c <number> with ADN, FH, GTH, LINK and ALL.
Use -d <number> with commands DMA, SOFT and REGISTERS.
If neither -c nor -d are given, card or device number @ is used as appropriate.

To reset a given component pass the name to flx-reset on the command line:

flx-reset <component_name>

6.2.6 flx-pod

Help text of flx-pod.:

Usage: flx-pod [OPTIONS] [COMMAND]
Displays an FLX card's MiniPOD channel enable status, and allows
a user to enable or disable individual RX and/or TX channels.

Options:
-c NUMBER Use FLX card indicated by NUMBER. Default: 0.
= Display help.
-V Display the version number.
-i NUMBER MiniPOD channel number: [@..11] (default: all).
-R NUMBER Receive (RX) MiniPOD number : [1..4] (default: all).
-T NUMBER Transmit (TX) MiniPOD number: [1..4] (default: all).
Commands:
disable | disa | dis Disable selected MiniPOD channels
enable | ena Enable selected MiniPOD channels

6.2.7 felix-cmem-free

The felix-cmem-free tool makes it possible for a user to manually deallocate memory from the
CMEM buffer. In order to use the tool, the 'handle' of the allocated memory must first be found. To
do this issue the following command:

cat /proc/cmem_rcc

This will dump the current allocation status in a format similar to what is shown below.

CMEM RCC driver (FELIX release 4.5.0)

The driver was loaded with these parameters:
gfpbpa_size = 7500

gfpbpa_quantum = 4

gfpbpa_zone 0

39

numa_zones =1
alloc_pages and alloc_pages_node
PID | Handle | Phys. address | Size | Locked | Order | Type |

Name

GFPBPA (NUMA = @, size = 7500 MB, base = 0x0000000295c00000)

PID | Handle | Phys. address | Size | Locked | Type | Name
27549 | 0 | 0x0000000295c00000 | 0x0000000040000000 | no | 4 |
F1xReceiver@

The command 'echo <action> > /proc/cmem_rcc', executed as root,
allows you to interact with the driver. Possible actions are:
debug -> enable debugging

nodebug -> disable debugging

elog -> Log errors to /var/log/messages

noelog -> Do not log errors to /var/log/messages

freelock -> release all locked segments

The 'handle' is shown in the second column in the 'GFPBGA' table, in the row according to the
process whose memory you wish to deallocate. Finally, pass the handle to felix-cmem-free as
follows:

felix-cmem-free <handle>

Future FELIX releases (software version 4.2 onwards) should incorporate more advanced
automatic deallocation in the case of abnormal program termination, but in the short term felix-
cmem-free should provide a manual workaround.

6.2.8 flx-busy-mon

The flx-busy-mon tool enables a FELIX card’s BUSY interrupt (triggered by a BUSY signal change),
then starts monitoring the BUSY signal controlled by the BUSY interrupt, displaying a status line
every second, indicating the number of triggers seen and the BUSY percentage in the past second,
calculated by the software from the time stamps between BUSY active and inactive events.

Here is an example, where the FELIX card’s #0 master BUSY gets activated and then deactivated a
couple of seconds later:

> flx-busy-mon

Firmware: FLX712-GBT-2x2CH-230309-1652-GIT:rm-5.0/3091
Monitoring BUSY interrupt...

T #Interrupts BUSY%/sec Total BUSY time

T: cnt= 0 BUSY 0.000% (Total 0.0s Ons)

2: cnt= 0 BUSY 0.000% (Total 0.0s Ons)

3: cnt= 1 BUSY 32.665% (Total 0.326s 713340ns)
4: cnt= 1 BUSY 100.000% (Total 1.326s 944741ns)
5: cnt= 2 BUSY 72.904% (Total 2.56s 77188ns)
6: cnt= 2 BUSY 0.000% (Total 2.56s 77188ns)

60

7: cnt=

8: cnt=

9: cnt=
AC Exiting.

2 BUSY 0.000% (Total 2.56s 77188ns)
2 BUSY 0.000% (Total 2.56s 77188ns)
2 BUSY 0.000% (Total 2.56s 77188ns)

Help text of flx-busy-mon:

Usage: flx-
Displays pe
as well as
(in bracket
in a single

Options:
-d NUMBER
-h
-V
-1 NUMBER
-L
-B <perc>

busy-mon [OPTIONS]

rcentage of BUSY (per second), total BUSY time,

number of BUSY interrupts (i.e. changes of the BUSY signal) detected

s the number of interrupts not matching a detected BUSY change, if any)
line of output, once per second

Use device indicated by NUMBER. Default: 0.

Display help.

Display the version number.

Interrupt number [@..7] of BUSY signal (default: 6).

Monitor and report latched BUSY sources (and clear when set).
Exit when BUSY percentage reaches or exceeds <perc> percent.

6.3 Dataflow Tools FELIX from/to Host PC

6.3.1 fdaq(m)

The fdaq tool is the primary tool for testing the FELIX data acquisition path (for a data stream from
a single FELIX device; fdaqm is a version of the same tool supporting multiple data streams, i.e. the
same could be achieved by running multiple instances of fdaq on different terminal windows at
the same time). The tool can run in multiple modes, from waiting for input for FELIX from a front-
end source to running with one of the two internal data generators on the card activated, mostly
for test purposes. In both modes fdaq will measure and report throughput for the duration of the

test. Data can be dumped to file or discarded upon receipt. If running in discard mode fdaq will

check the integrity of the data blocks and chunks it receives (e.g. block headers and chunk sizes;
and optionally it will count the chunks per (E-)link). If an error is found the test will, by default,
stop and fdaq will report on the first detected error. However, if option -D is used the run will

continue with

a regular report printed on all errors received.

This section assumes that your E-links and data generators are configured
properly as specified in Section 6.1. In this section we will cover various scenarios,
but a list of all options can be found in the help output, shown below.

When writing data to file, depending on the data rate coming from your FELIX
device it might only be possible to run fdaq for a couple of seconds when
exceeding the maximum write speed of your disc. The host memory buffer which
the data from the FELIX device is transferred to, will quickly fill up, and cause
fdaq to stop the ongoing transfer and exit before the buffer becomes completely
full, to avoid any corrupted data gets written to file.

61

Help text of fdaq:

fdaq version 24050300

Stream data from FLX-device to file(s). Whenever the set maximum file size

is exceeded a new file is created. Every second a status line

with data rates, data totals and memory buffer status is displayed.

(NB: if no filename is provided all data is consumed while checking the data blocks,
i.e. blockheader and (sub)chunk trailers;
chunk truncation and error counts are reported.)

Usage: fdaq -h|V -D -d<devnr> -b<size> -e|E -f<size> -H
-i<dma> -I -r<runnr> -t<secs> -n -C -R -T -X -0 -x<kbyte>
[<filename-base>]

-h : Show this help text.

-V : Show version.

-C : Do *not* check for presence of data chunk CRC errors
(when not writing to file).

-D : Debug mode on, i.e. output some additional info;

continue when memory buffer overflows.

-d <devnr> : FLX-device to use (default: 0).

-b <size> : DMA (cmem_rcc) memory buffer size to use, in MB
(default 1024, max 32768).

-e|E : Enable FLX-device data generator, internal (e) or
external (E) (default: false).

-f <size> : Maximum file size, in MB (default 4096, max 16384).

-H : Chunks have headers (default: auto-detect).
-1 <dma> : FLX-device DMA controller to use (default: 0).
-1 : use interrupt to receive data (default: polling)
-n : Display chunk count per e-link
(when exiting, when not writing to file).
-0 : Display status output not in columns (but line-by-line).
-r <runnr> : Run number to use in file names (default: none).
-R : Reset DMA at startup (default: 'soft reset' only).
-t <secs> : Number of seconds to do acquisition (default: 1).
-T : Do NOT add datetime as part of file names.
-X : Stream data from individual e-links to separate files

(default: false).
-x <kbyte> : Set size of FLX-device unit data block, in KByte
(forced; normally read from FLX-device itself).
<filename-base>: Name to be combined with datetime+runnumber+counter
of files created (unless option -T is given)

6.3.1.1 Running a DAQ Test with External Data Source

The most simple configuration for fdaq to run in is to listen for any data coming into FELIX over
the GBT/FULL mode link and measure the bandwidth as this arrives at the host. In this mode the
data is discarded. The only parameter a user must define is the time in seconds for which fdaq
should perform the test. The default time is 1 second. The syntax is as follows:

fdaq -t <secs>

62

For a three second test the output will resemble this:

$ fdaq -t3
Consume FLX-device data while checking the data (blockheader and trailers),
counts errors including chunk truncation, halts when the memory buffer is near
overflowing.
Also counts chunk CRC errors.
Opened FLX-device @, firmw FLX712-MROD-48chan-2004041603-GIT:RM4.10/1 (cmem
buffersize=1024MB)
START using DMA #0 polling

Secs | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps

1 0.0 0.0 0 0 0 0
2 0.0 0.0 0 0 0 0
3 0.0 0.0 0 0 0 0

STOP

-> Data checked: Blocks @, Errors: header=0 trailer=0

Exiting..

If you would like to dump your data to a file for analysis specify a filename after the other
command line parameters:

fdag -t<secs> testfile

This will run as above and produce a time-stamped .dat file in the directory you are running with a
name of the format 'testfile-<timestamp>-<counter>.dat'. You can specify the maximum size for the
file with option -f specifying a size in megabytes (default 1024, max 4096); a next file will have an
incremented <counter> as part of its name. If you like to split the input from multiple E-links into a
separate file per E-link use option -X. In that case the E-link numbers will become part of the
filenames too. If you do not want or need the timestamp use option -T. Note that this will overwrite
your files when you do a second run and use the same file name in the fdaq call.

6.3.1.2 Running a DAQ Test with Internal Data Generation

A facility to use both data generators within the FELIX card for the purposes of testing is provided
by fdaq. The 'internal' generator is connected directly to the data output path of the card (i.e. after
input side of the GBT link interface). Data from this generator therefore passes through the full
FELIX firmware data path with the exception of the link layer itself. The 'external’ data generator is
connected to the output path before the GBT layer. This means it can be configured to send data out
of a GBT link. If some loopback fibres are connected it is therefore possible to send data out of one
GBT transceiver and into another on the same FELIX and therefore test more of the data path. To
access these options in fdaq one must use option -e for internal data generation and option -E for
external data generation. Note that for external loopback (-E) to work the relevant emulator control
register must be set accordingly:

flx-config GTH_LOOPBACK_CONTROL 0x2.

The output from fdaq will be the same whichever source is used. Here is an example:

63

$ fdaq -t5 -e
Consume FLX-device data while checking the data (blockheader and trailers),
counts errors including chunk truncation, halts when the memory buffer is near
overflowing.
Also counts chunk CRC errors.
Opened FLX-device @, firmw FLX712-GBT-12chan-1910221102-GIT:rm-4.8/46 (cmem
buffersize=1024MB)
START (emulator) using DMA #0 polling

Secs | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps

1 1449.5 0.0 1449.5 0 2 1
2 1451.2 0.0 2900.8 0 1 2
3 1451.0 0.0 4351.8 0 3 4
4 1451.5 0.0 5803.3 0 2 5
5 1451.4 0.0 7254.7 0 1 6

STOP

-> Data checked: Blocks 7072497, Errors: header=0 trailer=0

Exiting..

6.3.2 fupload

The FELIX software tools suite makes it possible to transfer data from the FELIX host PC via the
FELIX card to the front-end across any GBT E-link. This is done using the fupload tool. With this
tool it is possible to transfer data either from a user defined file, or with predefined data chunks
with a fixed pattern of a configurable size and data pattern on a specified E-link across a GBT
connection. The full range of features of the tool can be seen in the help text shown below.

o This tool works with FULL mode firmware versions, where the link to the front-
end is a GBT link.

Help text of fupload:

fupload version 24050600

Upload data (test data or from file) to the given FLX-device E-link.
The E-Tink number is provided as a (hex) number directly (-e option)
or as a set of -G/g/p options,

unless option -R is given ('raw' unformatted upload).

Checks whether the E-link is valid and configured on the selected FLX-device,
unless option -c is given.

Usage: fupload [-h|V] [-D] [-d <devnr>] [-b <size>] [-c] (-e <elink>
| (-G <1nk> (-g <group> -p <path>) [-i <dma>] [-I]
[-s <bytes>] [-P <patt>] [-f <speed>] [-R] [-t <secs>]
[-u] [-x <size>] [-X] [-y <tlp>]

[<filename>]
-h : Show this help text.
-V : Show version.

-b <size> : DMA (cmem_rcc) memory buffer size to use, in MB (default 128, max

64

-B : Contents of <filename> is read as binary data (default: ASCII).

= : Do *not* check whether E-link is configured on FLX-device
(Note: for raw and broadcast uploads no check is done).

-d <devnr> : FLX-device to use (default: 0).

-D : Debug mode on, 1i.e. display blocks being uploaded.

-f <speed> : Speed up default upload rate of about 8MB/s by factor <speed>
(default: 1; only applies when using option -x)

-1 <dma> : FLX-device DMA controller to use (default: auto).

-1 : Run a trickle DMA (Trickle DMA index selected by -1).

-P <patt> : Test data pattern: @=incr, 1=0x55/0xAA, 2=0xFF, 3=incr-per-chunk

(default: 0).

-r <repeat>: Test data repeat count: upload <repeat>*<bytes> bytes of data (default:

30).

=R : Upload data unformatted, not as CR from-host data packets with header.

-s <bytes> : Number of bytes per chunk to upload (default: 32).

-t <secs> : Number of seconds for DMA time-out or wait until DMA done when @
(default: 0).

-u : Do not perform the actual upload operation.

-x <size> : Size of single-shot DMA transfers, in KByte (default @: one DMA, all
data).

-X : Use continuous-mode DMA for upload (default: single-shot).

-y <tlp> : Size of TLP used in FromHost DMA transfers, in bytes (default: 32;
expert use only).

Options to define the E-link to use:

-e <elink> : E-link number (hex) or use -G/g/p options.

-E <elink> : an optional 2nd E-link number to upload to
(alternating with the first given E-link number).

-G <lnk> : GBT-link number.

-g <group> : Group number.

-p <path> : E-path number.

<filename> : Name of file with data to upload (ASCII or binary),
or test pattern data if no name is given.

In ASCII data files one line represents one data packet (hexadecimal byte values
separated by spaces),
while lines starting with certain characters may be used to:

insert a comment line (ignored)

+ <cnt> insert a packet of the given length 'cnt' containing bytes of the given
(hex) byte value 'b'

*<n> repeat the previous chunk 'n' times
& <d> insert a configurable delay 'd' in microseconds between two packets
> <e> change the E-link number to upload to to 'e' (hex)

6.4 FELIX Configuration Tools

65

6.4.1 felink

The felink tool is a link descriptor interpreter which allows you to work out the E-link ID for a
given link given GBT/E-group/E-path (or vice versa). This is intended to be used in conjunction with
e.g. fupload to allow users to work out which link ID they should target with their data. Some
examples of possible uses will be given below, but you can find all possible options in the help text
below:

Help text of felink:

felink version 25011700

Convert a given E-link number into (1p)GBT, egroup and epath numbers, or vice versa.
The E-Tink number is provided as a (hex) number directly (-e option)

or as a set of -G/g/p options.

Optionally checks if this E-link is valid and configured on a given FLX-device (option
-d),

in to-host and from-host direction, taking into account GBT or 1pGBT.

Using option -d without providing an e-link number can be used to list
enabled e-links in both ToHost and FromHost directions on the FLX-device.

Use option -1 or -L to display a list of valid ((1p)GBT) E-link numbers,
optionally in combination with -G or -g options to restrict the output
to a particular link and/or egroup.

(Note that E-link numbers are also shown by the elinkconfig GUI).

Usage: felink [-h|V] [-d <devnr>] (-e|E <elink>
| (-G <lnk> (-g <group> -p <path>))
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : GBT E-link number (hex) or use -G/g/p options.
-E <elink> : 1pGBT E-link number (hex) or use -G/g/p options.
-G <Ink> : (1p)GBT-link number.
-g <group> : Group number.

-1 <dma> : In combination with -d lists enabled (ToHost) e-links
assigned to the given DMA descriptor index only.
-1|L : Show a list of valid GBT or 1pGBT E-link numbers

(use options -G/g/p to restrict the list).
-p <path> : E-path number.

A list of all valid E-links and coordinates can be seen with list mode, available with the following
syntax:

felink -1

6.4.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

Consider the example where a user wishes to know the E-link ID for a link connected to GBT link 2,
within E-group 3 and E-path 4. This can be done as follows:

66

felink -G<GBT ID> -g<egroup ID> -p<epath ID>

Filling these in gives results as shown below, from which we can see that the E-link ID is 0x9C. The
results also show alternative coordinates for the E-link in terms of GBT bit address and width.

$ felink -G2 -g3 -p4
E-link @9C = GBT #2 group #3 path #4, bit#56 width=2|4

It is also possible to search for link ID using the GBT ID, bit address of the start of the E-link in the
GBT frame and E-link width. The syntax is as follows, noting that the index must correspond to a
valid E-link start point.

felink -G<GBT ID> -I<bit address> -w<E-link width>

If a user then wants to search for GBT 1, bit 4 and width 2 the results will be as shown below. This
identifies the E-link in question as 0x42.

$ felink -G1 -I4 -w2
E-link 042 = GBT #1 group #0 path #2, bit#4 width=2|4

These calculations can also be done in reverse, to yield the coordinates of a given known E-link ID.
For this use the following syntax:
felink -e<E-1link ID in hex>

If as user then wants to know the coordinates of e.g. E-link 0x55 the tool can be used to give the
results as shown below. From this it can be seen that the GBT ID is 1, the E-group ID 2 and the E-
path ID 5. An estimate for the bit address and width is also displayed.

$ felink -e55
E-1ink @55 = GBT #1 group #2 path #5, bit#42 width=2 OR bit#40 width=8

6.4.2 fereverse

The fereverse tool makes it possible to swap the bit ordering of data transferred through a
designated E-link (or set of links: all in one Egroup, or all in a GBT link), including for EC and IC
links separately.

See help text below for the list of options.

Help text of fereverse:
fereverse version 21011300
Enable, disable or display the bit-order reversal feature for e-links,
a setting per e-path (e-link).
Without keyword '(re)set' the current setting is displayed.

Usage: fereverse [-h|V] [-d <devnr>] [-e <elink>]

67

[-G <lnk> [-g <group>] [-p <path>]] [-E] [-I] [-f] [-t] [set|reset]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <lnk> : GBT-link number (default: all links).
-g <group> : Group number (default: all groups).
-p <path> : E-path number (default: all paths).

= : Display or enable/disable the EC channel 'bit swap'.

-1 : Display or enable/disable the IC channel 'bit swap'.
(for options -E/-I use option -G, not -e; options -g/-p are ignored)

-f : Configure FromHost (FH) only.

-t : Configure ToHost (TH) only.

set : Enable e-link bit-reversal.

reset : Disable e-link bit-reversal.

In order to use the tool to toggle the bits for a given E-link use the following syntax:
fereverse -d <FELIX ID> -G <GBT ID> -g <E-group ID> -p 1 <set/reset>)

In this case the set option indicates the bits should be switched and reset indicates deactivation of
the switch. It is also possible to pass the E-link ID directly using option -e. If neither set or reset are
specified the tool will report back the current status. Examples of both cases are shown below.

$ fereverse -d@ -G1 -g1 -p1 set
GBT 1 egroup 1 epath 1 TH: ENABLED
GBT 1 egroup 1 epath 1 FH: ENABLED

$ fereverse -d@ -e49 reset
GBT 1 egroup 1 epath 1 TH: disabled
GBT 1 egroup 1 epath 1 FH: disabled

6.4.3 fgpolarity

The fgpolarity tool makes it possible for FELIX to adapt to the bit polarity of data produced by
front-end systems and sent via a Versatile Link[16] transceiver. The transceiver, by design, swaps
the polarity of incoming and outgoing bits (i.e. 0 becomes 1 and vice-versa). Some front-end systems
may already account for the swap in their design, but in order to send and receive packets to and
from those who haven’t this tool configures FELIX to automatically swap the bits for any designated
GBT links (and therefore all E-links within).

See help text below for the list of options.
Help text of fgpolarity:
fgpolarity version 21121600

Configure or display the GBT transceivers RX and TX polarity.
NB: settings for the entire FLX-card through device #0 only.

68

Usage: fgpolarity [-h|V] [-c <cardnr>] [-G <lnk>] [set]|reset]
-h : Show this help text.
-V : Show version.
-c¢ <cardnr>: FLX-card to use (default: 0).
-G <lnk> : GBT-link number (default: all).

-r : Configure RX only.
=it : Configure TX only.
set : Set reverse polarity for given GBT transceiver(s).
reset : Set default polarity for given GBT transceiver(s).

(without keyword '(re)set' the current setting is displayed)

In order to use the tool to toggle the polarity of a particular GBT link use the following syntax:
fgpolarity -d<FELIX ID> -G<GBT ID> <set/reset>)

In this case the set option indicates the activation of a polarity switch and reset indicates
deactivation of the switch. It is also possible to modify the Tx and Rx directions separately using
options -t and -r accordingly. By default both will be changed. The expected output from the tool is
shown below.

$ fgpolarity -d0 -G1 set
GBT 1 RX polarity: 1
GBT 1 TX polarity: 1

$ fgpolarity -do -G1 reset
GBT 1 RX polarity: 0
GBT 1 TX polarity: 0

6.4.4 feconf

The feconf tool is a command line tool providing a subset of the functionality of elinkconfig. With
this tool it is possible to upload a pre-defined E-link configuration file (jelc or .elc format) to a
FELIX card. Alongside the basic configuration, feconf also makes it possible to configure the FELIX
firmware data generators. For more information on the meaning of each parameter, consult
Section Section 6.1 on elinkconfig. feconf sets the so-called fan-out registers for front-end input (so
not for emulator input).

See help text below for the list of options.

Help text of feconf:

feconf version 22052200

Upload an e-link configuration from file (as generated by elinkconfig) to the given
FLX-device,

including generation and upload of emulator data contents.

Any 'RegisterSettings' present in the file are applied as well

(after the e-link and emulator configuration).

Usage: feconf [-h|V] [-d <devnr>] [-s <chunksz>] [-w] [-R] [-S] [-I <idles>] [-n] [-N]

69

6.

The femu tool gives users command line control over the FELIX firmware data generators, both in

<filename>
-h
-V
-d <devnr>
-F
emulator).

-s <chunksz>:

-W
false).

-1 <idles>
8).
<filename>

4.5 femu

: Show this help text.

: Show version.

: FLX-device to use (default: 0).

: Do not set FLX-card fan-out registers (default: set for DAQ, not

: 8b10b-words LSB first (GBT only; default: MSB first).

: Don't write the configuration, just read it in and display some info.
: Skip the extra register settings included in the configuration file.
: Generate emulator data chunks with pseudo-random size.

: Generate emulator data with a StreamID (first byte).

Emulator data chunksize to generate (default: 32).

: Generate emulator data chunksize dependent on e-link width (default:
: The number of idles between generated emulator data chunks (default:

: Name of .yelc file with FLX-device E-link configuration.

the from and to host directions.

See help text below for the list of options.

Help text of femu:

70

femu version 22030800
Show or configure 'FanOut-Select' registers and start or stop

an emulator on

Usage: femu -h|
-h
-V :
-d<devnr>
-e|E|n

a FELIX device.
V -d<devnr> -e|E|n -1|L [-T|t -s<size> -i<idles>]

: Show this help text.

Show version.

. FLX-device to use (default: 0).
: Enable FLX-device data emulator, internal (e) or external (E) or

disable emulator (n).

-f
external).

-1

-L

-i<idles>

-s<size>

T

i

When no option is given the current status is displayed.

: When disabling emulator set TOHOST_FANOUT to emulator (default: to

: 'Unlock" FanOut-Select registers.

: 'Lock' FanOut-Select registers.

: Number of idles between chunks, in bytes (multiple of 4)
: L1A-triggered emu chunk size, in bytes (multiple of 4)

(in combination with option -t or -T).

: Select the alternative ('logic') L1A-triggered emulator

(also option -s required; FULL firmware only).

: Select the alternative ('logic') emulator, untriggered

(also options -i and -s required; FULL firmware only).

6.4.6 ffmemu

The ffmemu tool gives users command line control over the data generator of the FMEMU (FULL
mode Emulator) FELIX firmware.

See help text below for the list of options.

Help text of ffmemu:

ffmemu version 21091300
Configure or show configuration of the FULLMODE emulator firmware.
Starting the emulator is optional.
Enable 2-bit E-link @ (egroup @, epath @, 8b10b) for XOFF.
Enable 8-bit E-link 9 (egroup 1, epath 1, TTC-3) for TTC.
Usage: ffmemu [-h|V] [-d <devnr>] [-c] [-s] [-i <idles> [-t <cnt>] [-T] [-w <words>]
[-X] [-R <seed>]
= : Show this help text.

-V : Show version.

-d <devnr> : FLX-device to use (default: 0).

-C : Only configure the FMEMU; required for options -1i,-R,-t,-T,-w,-X;
stops the emulator, unless in combination with option -s.

=[z : Issue an ECR.

-i <idles> : Set idles-between-chunks count, range [0..0xFFFF].
-R <seed> : Set random seed, in combination with random chunk sizes (-w @), range
[1..0x3FF].

-S : Restart the emulator, after any configuration to be done.
-t <ent> @ Number of triggers (chunks) to generate (@=unlimited, [1..65534]).
-T : Enable TTC-triggered mode (default: free running).
-w <words> : Set chunk 4-byte word size (@=random, [3..65535]).
-X : Enable XON/XOFF.
6.4.7 fttcemu

The FELIX TTC emulator can be programmed through the fttcemu tool available in the FELIX
software. The status of the FELIX TTC emulator is shown running the command fttcemu, which
displays the values of the various FELIX TTC emulator parameters. This is an example of what is
displayed:

$ fttcemu

Status:

TTC_EMU_SEL=0, TTC_EMU_ENA=0
TTC_EMU_BCR_PERIOD=3564
TTC_EMU_ECR_PERIOD=0
TTC_EMU_LTA_PERIOD=0

See for available options the help text below.

71

Help text of fttcemu:

fttcemu version 25031800
Show or configure TTC emulator registers and enable or disable the TTC emulator.

Usage: fttcemu -h|V -c<cardnr> -e|n -B<bc> -E<period>

-h
-V
-c <cardnr>:
-e|n

-b <ena>
-B <be>

-E <period>:
-f <freg>
-L <cnt>
-t <us>

-X <x11id> :
-m <ttc2h> :

-f<freg> -L<cnt> -t<us> -R -X<x11id> -m<ttc2h>

: Show this help text.
: Show version.

FLX-card to use (default: 0).

: Enable (-e) or disable (-n) the TTC emulator on the selected card.
: Enable (1) or disable (@) TTC emu Busy-In (default: leave untouched)
: Set the BCR period, in units of BC (Bunch Count);

for <bc> equal to @ a single BCR is generated.
Set the ECR period, in ms;
for <period> equal to @ a single ECR is generated.

: Set the TTC emulator L1A fregency, in Hz.

(any individually requested L1As (option -L) generated first)

: Generate <cnt> LTA triggers, using the interval set by -t (default: 0).

(any requested single BCR or ECR is generated first).

: Interval (approximately, in microseconds, default: @)

between individually generated L1As (option -L).

: Reset the TTC emulator; also reset the TTC decoder and XL1ID.

Set value of XL1ID-after-reset and execute XL1ID reset.
TTC2Host v4 (LTI) message format configuration, <ttc2h>:
4: +global_sync, 2: +user_sync, 1: +user_async, 0: none
(TTC2Host message size: 22, 24, 32, 20 bytes resp.).

Note: options -B, -E, -f and -L also enable the TTC emulator, if necessary.
When no option is given the current TTC emulator status (register contents) is

displayed.

The TTC emulator can be enabled and disabled on the fly. TTC_EMU_SEL selects the TTC Source.
When set to '0', the TTC data comes from the decoder, when set to '1', the TTC data comes from the
TTC emulator. TTC_EMU_ENA starts the emulator. When set to '0' the emulator does not produce
any data. When set to '1' the emulator is running. The variables TTC_EMU_SEL and TTC_EMU_ENA
are both controlled with the command 'fttcemu -e' (setting both parameters to '1') and 'fttcemu -n'

(setting both parameters to '0’).

The TTC emulator is able to generate periodic L1A, ECR and BCR signals. TTC_EMU_L1A_PERIOD is
the L1A period in units of LHC clock period (25 ns) set by the user as a frequency using option -e.
TTC_EMU_BCR_PERIOD is the BCR period in units of LHC clocks and by default has a value 3564
which is the default in the LHC experiments (representing a period of roughly 89.1 microsecond).
TTC_EMU_ECR_PERIOD is the ECR period in units LHC clocks, but note that the fttcemu tool sets the
ECR period in units of milliseconds (e.g. in the ATLAS experiment the ECR period is set to 5 seconds,

so that would be achieved by using option '-E 5000')

Set an L1A frequence of 1000 Hz an ECR period of 1 second:

fttcemu -f1000 -E1000

72

Generate a single ECR and a BCR:

fttcemu -EO -BO

Generate a single ECR, followed by 10 L1A triggers at 10 Hz, then switch to 1000 Hz L1A:

fttcemu -E@ -L10 -t100000 -f1000

6.4.8 fttcbusy

The fttcbusy tool gives an overview of various FELIX firmware BUSY settings, such as the E-link
TTC-BUSY status and enables, as well as the BUSY settings with respect to the main output FIFO and
DMA operation and the status and settings of the board’s BUSY output. Note that some settings are

only effective when made on device 0 (zero) of a dual-device FELIX card, such as the FLX-712.

Here’s an example of fttcbusy output:

> fttcbusy -T
TTC-BUSY timing: Prescale = 15 Width = 15 Limit-time = 15

E-link TTC-BUSY status (latched BUSY requests and enables for BUSY output):

GBT
GBT

E

E

E
GBT
GBT
GBT
GBT
GBT
GBT
GBT
GBT
GBT
GBT

BUSY-by-DMA

#00: TTC-BUSY=000000000000000 BUSY-ENA=000000000000000
#01: TTC-BUSY=00000000000A020 BUSY-ENA=-000000000000000

= 045
= 04D
= Q4F
#02:
#03:
#04:
#05:
#06:
#07:
#08:
#09:
#10:
#11:

1-0-5 (not enabled)
1-1-5 (not enabled)
1-1-7 (not enabled)
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
TTC-BUSY=000000000000000
: *enabled=0

BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000
BUSY-ENA=000000000000000

ToHost=0 (BAR0:0) (latched=0)

buffer free space: assert=200MiB ((800000) deassert=220MiB (DC00000)

BUSY-by-FIFO : enabled=0
thresh: deassert=3FF assert=4FF

BUSY FullMode:

status: low_crossed=0 high_crossed=0 (latched=0)
busy=000000 (latched=000000)

TTC Bch/TType: *1

BUSY output

: *status=0, *inhibit=0, *master=0
(NB: items marked by * are global, access via card endpoint @ only!)

Settings for the TTC-BUSY signal timing and BUSY-out signal can be configured. See help text below
for the list of options.

73

Help text of fttcbhusy:

fttcbusy version 24129000
Displays BUSY-related settings and optionally E-link (LTI)TTC BUSY status and enables,
optionally clearing (latched) E-link BUSY bits.
With option -T the 'TTC BUSY accepted' register contents are displayed, as well as
the corresponding E-link numbers, while option -C clears these registers after being
displayed.
Also the tool may be used to configure the TTC-BUSY signal settings (limit, prescale,
width)
and BUSY output settings (master, inhibit, B-channel, DMA and FIFO tresholds).
Option -R resets the TTC decoder.
NB: some of the settings are only read and written via FLX-card device #0

(in the output indicated by a '*").

Usage: fttcbusy -h|V -d<devnr> -C -R -G<linknr>|-T
-e|n<elinknr> | -E|N<linknr>
-1<limit> -p<prescale> -w<width>
-m -i -b -B
-X<thresh> -x<diff> -Y<thresh> -y<diff>

-h : Show this help text.

-V : Show version.

-d <devnr> : FLX-device number (default: 0).

-C : Clear (latched) TTC-BUSY register bits.

-R : Reset TTC decoder.

-G <linknr> : GBT-link number, implies option -T.

-T : Display per-(E)1link (LTI)TTC-BUSY info (default: all links).

-e|n<elinknr>: Set/reset e-link BUSY-enable of selected e-link number (hex).
-E|N <linknr>: Set/reset e-link BUSY-enable for e-links of this link.

-1 <limit> : Set TTC BUSY limit time parameter (16-bit).

-p <prescale>: Set TTC BUSY prescale parameter (20-bit).

-w <width> : Set TTC BUSY width parameter (16-bit).

-m : Set (1) or clear (@) Master BUSY.

-1 : Set (1) or clear (@) BUSY Inhibit (= BUSY off).

-b : Enable(1) or disable(@) BUSY-by-DMA and BUSY-by-FIFO.
-D : Enable(1) or disable(@) BUSY-by-DMA.

-F : Enable(1) or disable(@) BUSY-by-FIFO.

-B : Enable(1) or disable(@) TTC B-channel/TriggerType.

(NB: if set limits TTCtoHost rate to ca. 200KHz max)
-X <thresh> : Set BUSY-by-DMA assert threshold (in MiB).

-x <diff> : Set BUSY-by-DMA difference assert/deassert thresholds (in MiB).

-Y <thresh> : Set BUSY-by-FIFQ assert threshold (hex, max=0xFFF).

-y <diff> : Set BUSY-by-FIFO difference assert/deassert thresholds (hex).
6.4.9 fexoff

The fexoff tool is used to display, enable or disable the XON/XOFF feature for FULL mode links.

74

Help text of fexoff:

fexoff version 22012700

Enable, disable and display XOFF feature settings for FLX-device links,for FULL-mode
firmware.

Also displays info about FIFO thresholds crossed (THRESH-X), as well as XON statistics
(STATS).

Without keyword '(re)set' the current settings and status are displayed.

Usage: fexoff [-h|V] [-d <devnr>] [-C] [-L <low>] [-H <high>] [-G <1lnk>] [set]|reset]

-h : Show this help text.

-V : Show version.

-d <devnr> : FLX-device to use (default: 0).

-C : Clear (latched) XOFF high-threshold-crossed bits.

-G <Ink> : Link number (default: all).

-L <low> : Set FIFO XOFF low threshold [1..15], in 1/16ths of size.

-H <high> : Set FIFO XOFF high threshold [1..15], in 1/16ths of size.
(options -L/H can not be combined with a set/reset op)

set : Enable link XOFF.
reset : Disable link XOFF.
6.4.10 fexofftx

The fexofftx tool can be used to manually generate an XOFF or XON signal on a selected FULL
mode link, for test purposes.

Help text of fexofftx:

fexofftx version 21091300
Generate an XOFF or XON (toggles between them) on a to-frontend link, in FULL-mode

firmware.
Usage: fexofftx [-h|V] [-d <devnr>] -G <1lnk>

-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-G <1lnk> : Link number.
6.4.11 feto

The feto tool gives users command line control over the FELIX block timeout at the level down to
individual E-links. If enabled FELIX will time out incoming data blocks taking longer than a
designated period to arrive and attach a timeout trailer to the block. The block will then be
transferred to the host as normal. The complete list of options of the tool can be seen in the help
text below.

Help text of feto:

feto version 23030300
Enable, disable or display either the instant time-out setting,

75

a setting per e-path (e-link), or the so-called global time-out
and associated time-out counter (number of clocks until time-out),
or the TTC time-out and associated counter (RM4 only).

Without keyword '(re)set' the current setting of the requested
(group of) time-outs is displayed (one complete link at most).

Usage: feto [-h|V] [-d <devnr>] [-e <elink>] [-G <lnk> [-g <group>] [-p <path>]]

[-T] [set|reset] [<globcntr>]
: Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-1link number (hex) or use -G/g/p options.
-G <Ink> : (1p)GBT-Tink number.
-g <group> : Group number (default: all groups).
-p <path> : E-path number (default: all paths).

-T : Read or configure TTC time-out (RM4 only).
set : Enable time-out.
reset : Disable time-out.
<globentr> : Global or TTC time-out counter value to set.
Examples:
> feto set (Enable global time-out)

> feto reset 1000 (Disable global time-out, set counter to 1000)
> feto -G1 set (Enable instant time-out on all E-links of 1link 1)

> feto (Show global time-out and counter and instant time-out registers)

6.4.12 febrc

The febrc tool is used to assign the FromHost broadcast capability to individual E-links, or sets of E-
links, e.g. all those belonging to a particular E-group number or all belonging to a link.

Data uploaded to a broadcast E-link number, as chosen by the user, is sent to each E-link enabled

and enabled for broadcast matching the broadcast E-link number.

A broadcast can be made to:

* one E-link on all links, provided the E-link is broadcast-enabled on each applicable link,

¢ all (broadcast-enabled) E-links on one link,

 all (broadcast-enabled) E-links on all links.
See help text below for the list of options.

Help text of febrec:

febrc version 23052300

NOTE: for RM5 firmware only.

Enable, disable or display the broadcast enable setting,

a setting per e-path (e-link)

Without keyword '(re)set' the current setting of the requested

(group of) broadcast enables is displayed (one complete link at most).

76

Usage: febrc [-h|V] [-d <devnr>] [-e <elink>] [-G <lnk> [-g <group>] [-p <path>]]
[set|reset]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <lnk> : (1p)GBT-link number.
-g <group> : Group number (default: all groups).
-p <path> : E-path number (default: all paths).

set : Enable time-out.
reset : Disable time-out.
Examples:

> febrc -G4 set (Enable broadcast on all E-links of link 4;
broadcast e.g. on link 4 using E-Tink @x13F)
> febre -g1 set (Enable broadcast on E-links of E-group 1 of all links;
broadcast e.g. on all links using E-link 0x7ff)
> febrc -e42 set (Enable broadcast on E-link 0x042 (on Link 1, E-group @, path 2);
broadcast e.g. on all Links E-group @, path 2 using E-link @0x7c2)
> febrc (Show broadcast enable registers content)

6.4.13 fflash

The fflash tool is designed specifically for loading a selected previously programmed firmware
image from FLASH memory aboard a FLX-711 or FLX-712 into the card’s FPGA, if the firmware
image loaded at power-up is not the required one, or because one wants to switch between versions
e.g. for test purposes. At power-up of the FELIX card the firmware image as selected by the setting
of onboard switches will become the operational firmware version. Note that after loading a
different firmware either a host machine reboot or PCle hotplug operation is required (see 5.1.1
PCle hotplug procedure for details) to return the board to normal operation with the new firmware
image operational.

See help text below for the list of options plus some examples.

Help text of fflash:

fflash version 21020800

Tool for loading a firmware image from one of the partitions
of the onboard flash memory of an FLX-712 into the card's FPGA,
issueing commands to the host system I2C bus to achieve this.

A subsequent hotplug procedure or machine reboot is required.

Usage: fflash [-h|V] [-q] -f<flashnr>
[[-L|I] [-U|P -d<devslot>] [-S] [-b<busnr>] [-r<chan>] [-R<raddr>]
[-s<saddr>] [-u<uaddr>] [-T<sec>]]

-h : Show this help text.

-V : Show version.

-q : Be quiet (only errors will be displayed).

-f <flashnr>: Flash memory segment partition [0..3] selection (no default).

-1 : Generate an INIT_B pulse on the FLX-card (to reset flash devices).
-L : Load firmware from the given flash partition into the card.

77

78

The following options are relevant in conjunction with the -L and/or -I option:

-b <busnr> : I2C bus number (default=0).

-r <chan> : Riser card I2C-switch channel number (default=0)
(Select I2C-switch address using option -R).

-R <raddr> : Riser card I2C-switch I2C address (default 0x70).

-s <saddr> : I2C-switch I2C address (hex, default=0x77, expected range: 0x70-0x77).
NB: 0x70 already taken by the riser card I2C-switch!

-u <uaddr> : Embedded microcontroller I2C address
(hex, default=0x67, expected range: 0x60-0x67).

-U : Use USB I2C-dongle instead of system SMBus
(requires scripts i2cset.py and i2cget.py installed in /opt/flx).
-P : Use 'ipmitool' to access system SMBus.
INB: use -d option to select 'device slot': 1 or 2.
-T <sec> : Set 'Prog-done’ timeout [s] (default: 7)
-d <devslot>: Device slot (1 or 2), only in combination with -P.
-S : Precede calls to i2cget/set or ipmitool with 'sudo'.

(default: 'sudo' not used; applies to options -L|I|P|U).
Examples:
Load flash memory image partition #2 into the card:
fflash -f2 -L

Load flash memory image partition #2 into the card, using I2C-bus #1,
riser card I2C-switch channel #0@, FLX-card I2C-switch address 0x75 and
FLX-card microcontroller I2C-address 0x65:

fflash -f2 -L -b1 -r@ -s75 -ub5

How to determine the I2C-switch and uC I2C addresses
(options -s and -u respectively):

Note 1: there is an I2C-bus number (option -b) to select as well,

which is assumed to have the value '1' (following '-y') in the examples below.
Note 2: in the standard FELIX server there is an additional I2C-switch

on the socalled riser card; its channel is selected using option -r;

its I2C address (default 0x70) can be selected using option -R;

it means that the 2 FLX-cards in such a server may have identical

'-s' and '-u' addresses, i.e. most likely their defaults

while the riser card setting is: 'top' position = -r @, 'bottom' = -r 1.

"sudo i2cdetect -y 1' should show you an address in the range 0x70-0x77,
let's say @0x77; this is then the address to use in option -s;
subsequently run 'sudo i2cset -y 1 @x77 1' to set the I2C-switch
causing an additional address in the range 0x60-0x67 to appear

in the output of 'sudo i2cdetect -y 1', so run that command again;

this is the address to use in option -u.

On the FLX-712 dipswitch 114 configures the '-s' and '-u' addresses:
switch 1-3 to set 3 LSBs of '-s', i.e. 0x70-0x77
switch 4-6 to set 3 LSBs of '-u', i.e. 0x60-0x67

6.4.14 fflashprog

The fflashprog tool is designed specifically for programming FLASH memory aboard a FLX-711 or
FLX-712 from an .mcs file containing a firmware image in Intel-HEX format. On the FLX-712 card
up to 4 separate firmware images may be stored. One of the images, as selected by onboard
switches, will be loaded into the card at power-up and become the operational firmware; if another
of the stored images is required, the fflash tool is used to accomplish that.

In addition the fflashprog tool can be used to verify an image against an .mcs file or if necessary, to
erase a firmware image from memory.

See help text below for the list of options plus some examples.

Help text of fflashprog:

fflashprog version 20040900

Tool for programming, verifying, erasing or dumping firmware images,

stored in a FLX-711/712 card's flash memory.

(to load a selected firmware image into the FLX-card's FPGA use fflash)

Usage: fflashprog [-h|V] [-q] [-c <cardnr>] -f <flashnr> [-D] [-E] [-F]
[<filename>] [prog]

-h : Show this help text.
-V : Show version.
-q : Be quiet (only errors will be displayed).

-c <cardnr> : FLX-card selected (default: 0).
-d <devnr> : FLX-device to use (default: @) OBSOLETE: use -c.

-D : Read and display contents of the selected flash partition or flash
file.
-E : Erase the selected flash partition.

-f <flashnr>: Flash memory segment partition [0..3] to dump, to erase,
to verify or to program (no default).
-F : Use the (slow) word-by-word instead of (fast) page programming method.

<filename> : Name of MCS file to dump, verify or program.
prog : Literal text string to initiate flash programming
(or else flash verification will take place).
Examples:
Read and dump to screen flash memory image partition #2:
fflashprog -f2 -D
Erase flash memory partition #2:
fflashprog -f2 -E
Verify flash memory partition #2 against mcs file <filename>:
fflashprog -f2 <filename>
Program flash memory partition #2 with the contents of mecs file <filename>:
fflashprog -f2 <filename> prog
Read flash ID only:
fflashprog -0
Extra:
Read and dump to screen the memory image in mcs file <filename>:

79

fflashprog -D <filename>

6.5 FELIX Data Debugging Tools

6.5.1 fcheck

fcheck is a debugging tool which can analyse the .dat files produced by the fdaq tool and check for
data integrity issues. The tool will perform checks on a file to a specified degree of severity. As well
as running checks, the tool can also be used to dump selected data blocks to screen, either split into
data chunks or as raw data, to facilitate closer visual inspection of data or of any of the issues found
by fcheck. Optionally the tool decodes data chunks as GBT-SCA replies, IC-channel replies or TTC-to-

Host messages.

To run a data integrity check, specify the file name and the check detail level as follows:

fcheck -B<level> testfile.dat

See help text below for the list of options.

Help text of fcheck:

80

-h

fcheck

<lvl>

<blocks>:
: Do NOT report chunk truncation/error/CRCerror.
: Do NOT report chunk CRCerror.

fcheck version 25032500
Usage:

-h|V -A -B<id> -c|C|D -e<elink> -F<blocks> -S<blocks> -H
-x<kbyte> -X -t|T -w -0|0 -2|4|8 -u<cnt> <filename>

: Show this help text.
: Show version.
: Decode and display data chunks that are GBT-SCA,

IC or TTCtoHost frames.

: Do a check on (emulator) data blocks according to <lvl>,

and display a data summary (default: 2):

0: Check for proper block headers at block boundaries,
for each block 1 line of output is produced.

1: Same as @, but only when an error is found a line is output.

2: Full integrity checking of blocks, starting from
the block trailer going through all chunks.

3: Same as 2, including a check on expected emulator data payload,
which must constitute an incrementing byte.

4: Same as 3, but inconsistent maximum values of L1ID are not reported.

: Display data 'raw' datablocks (default: chunk data) (with option -F)
: Display chunk data bytes only, nothing else.
: Display only whole data chunks, i.e. the user's data frames.
<elink> :
<blocks>:

E-1ink number (hex) to filter for block check or block display.
Dump <blocks> FLX data blocks to display (overrules data check option

Chunk types: BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==",
TIMEOUT="]]", NULL="@@", OUTOFBAND="##",

followed by 'T' for chunk truncation and/or 'E' for error.
Skip <blocks> of data blocks before starting check or display.

-w : Instead of displaying, write (binary) chunkdata to file (dataout.dat).
-0 : Display time-out chunkdata bytes (zeroes) (default:not).
-0 : Do not display time-out chunks at all.
-x <kbyte> : Set size of FLX-device unit data block, in KB (default:1)
(NB: overrules any blocksize derived from data)

-X : Trailer size is 32-bit (default:16)

-u <cnt> @ Number of 1-,2-,4- or 8-byte values per line displayed.
-2 : Display chunk data as 2-byte words (little-endian).

-4 : Display chunk data as 4-byte words (little-endian).

-8 : Display chunk data as 8-byte words (little-endian).

<filename> : Name of file containing data to check or display.

Here are some examples of the tool’s use:

Run a full integrity check of all data blocks in file 'file.dat', reporting data chunk errors as well as
data block corruption, including block number, E-link number and block word index:

fcheck -B2 file.dat

Display the data chunks from 2 data blocks starting from block number 1000 in file 'file.dat":

fcheck -S1000 -F2 file.dat

Display the raw data from 2 data blocks originating from E-link 8 starting from block number 1000:
fcheck -S1000 -F2 -e8 -c file.dat

Display the data from 2 data blocks originating from E-link 8 as 4-byte items starting from block
number 1000, and not displaying the zeroes of time-out chunks, just their sizes:

fcheck -S1000 -F2 -e8 -4 -0 file.dat

Display the data chunks from 2 data blocks and decode the chunks that look like they might be
replies from a GBT-SCA device, including control byte, transaction ID, channel number, length,
error byte and data (option -A can be used as well to decode chunks originating from a TTC-to-Host
virtual E-link, displaying clearly the various items and counters contained):

fcheck -F2 -A -0 file.dat

6.5.2 fedump

The fedump tool is designed to make it possible to dump data arriving at FELIX directly to screen
for debugging purposes. Users of the tool can filter the data stream by E-link ID and FELIX card
number, and also have the option of displaying the data split into its FELIX-format data chunks
(and optionally skip the time-out chunk data or time-out chunks all together) or in a raw format,
with payload data optionally displayed as either 1-, 2-, 4- or 8-byte values.

See help text below for the list of options.

Help text of fedump:

fedump version 25032500

81

Dump selected E-link chunk data (optionally block-by-block)
received from an FLX-device to screen.
Chunk types are delimited by:
BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==", TIMEOUT="]]", NULL="@@", OUTOFBAND="##"
Usage:
fedump -h|V -A|B -c|D -d<devnr> -e<elink> -i<dma> -I -0|0 -2|4|8 -u<cnt> -H
- : Show this help text.

-V : Show version.
-A : Decode and display data chunks that are GBT-SCA reply,
IC reply or TTCtoHost frames.
-B : Interpret chunks that could be GBT-SCA or IC requests/commands.
-C : Display data 'raw', block-by-block (default: chunk data).
-d <devnr> : FLX-device to use (default: 0).
-D : Display only whole data chunks, i.e. the user's data frames,

merging FIRST, MIDDLE and LAST subchunks.
-e <elink> : E-link number (hex) to filter out for display (default: no filter).

-H : Chunks have headers (default: auto-detect).

-i <dma> : FLX-device DMA controller to use (default: 0).

-1 : Use interrupt to receive data (default: polling).

-0 : Do not display time-out chunkdata (zeroes).

-0 : Do not display time-out chunks at all.

-u <cnt> @ Number of 1-,2-,4- or 8-byte values per line displayed.
-2 : Display data as 2-byte words (little-endian).

-4 : Display data as 4-byte words (little-endian).

-8 : Display data as 8-byte words (little-endian).

6.6 GBTX and IpGBT Configuration Tools

6.6.1 fice

The fice tool communicates on the IC channel of a GBT or IpGBT link, to read and write registers on
a GBTX or IpGBT chip present on a remote system connected to this link, in order to configure the
GBTX or 1pGBT as required. Optionally fice can configure a secondary IpGBT via the EC-link of the
primary 1pGBT, or alternatively even through an I2C Master of the primary IpGBT.

Individual registers may be read or written or a file containing a range of register settings can be
read in by the tool and written to the GBTX or IpGBT. In addition the contents of a file with register
settings can be compared to the current register settings of a GBTX or IpGBT, where any differences
are displayed.

See help text below for the list of options.

Help text of fice:

fice version 25033100

Tool to read or write GBTX or 1pGBT registers via the IC-channel

of an FLX-device (1p)GBT link,

and for 1pGBT optionally from/to a secondary 1pGBT via the primary 1pGBT's EC-channel,
or from/to a secondary 1pGBT via an I2C Master of a primary 1pGBTv1/v2.

82

Read or write a single byte from or to the given GBTX/1pGBT register address
or write to multiple consecutive GBTX/1pGBT registers using the contents
of a file (i.e. ASCII file: 1 (register) byte value (hex) per line of text,
e.g. the 'TXT' file generated by the GBTXProgrammer tool,
or alternatively per line of text an address followed by a byte value,
optionally followed by a comment text.
NB: in the latter case registers are always written one-by-one,

as the registers may be listed in any order).
Using option -C the file contents is not used to *configure* but *compared*
to the current GBTX or 1pGBT register contents.

Provide a file name *or* use option -a with an address and an optional additional byte
value

to read resp. write a single GBTX or 1pGBT register or, without option -a,

to read (and display) *all* registers of the GBTX or 1pGBT (v@ or v1/v2).

Without both option -a and file name all registers are read out and displayed

either in one IC read operation or optionally one-by-one (option -0).

Reading via another 1pGBT I2C Master (option -s) is either one-by-one or in groups of
16

(the maximum number of bytes that can be read in a single I2C Master operation).

Option -t displays the register values in a format that could be used
as a 'TXT' file for this tool or the I2C-dongle GBTX programmer.
Usage:
fice -h|V -d<devnr> -G<lnk> -0|1 -e -i<dma> -I<i2c> -Z|R -t|T
-m<master> -f<khz> -s<i2c> -a<addr> <byte>|<filename>

-h : Show this help text.

-V : Show version.

-0 : If 1pGBT, assume v@ (default: auto-detect).

-1 : If 1pGBT, assume v1/v2 (default: auto-detect).

-3 <addr> : GBTX/1pGBT register address (decimal or hex, @0x.. or x..)
to read or write.

-C : In combination with <filename>: compare GBTX/1pGBT register
contents to file contents and display the differences.

-d <devnr> : FLX-device to use (default: 0).

-e : Use the 1pGBT EC-channel to access a secondary 1pGBT.

-f <freq> : I2C Master bus frequency, in KHz
(only with -s; 100,200,400 or 1000; default:100).

-G <1lnk> : GBT-link number.

-i <dma> : FLX-device DMA controller for receiving (default: 0).

-1 <i2¢> @ GBTX/1pGBT I2C address (hex).

-m <master>: I2C Master index (only with -s; 0,1 or 2; default:0).

-0 : When reading or writing all (consecutive) registers, do it one-by-one
(default: single multi-register read/write operation when possible).
-R : Receive replies on any E-link.

-s <i2e> @ I2C address (hex) of a secondary 1pGBT accessed via an 1pGBTv1
I2C Master (NB: use option -0 to access an 1pGBTv@ like this).
-t : Display one register value per line in output
(i.e. 'TXT'-format like).

83

-T : Display one address + register value per line in output
(i.e. similar to 'TXT'-format, but different..).
-Z : Do NOT receive and process/display replies.
<byte> : Byte value (decimal or hex, Ox.. or x..) to write to
a GBTX/1pGBT register (option -a).
<filename> : Name of text file with GBTX/1pGBT (hex) register data to compare
against,
or to write to consecutive registers (if one value per line;
also accepts files with address+value (both hex) per line,
separated by a space, in which case registers are written one-by-one).
=> Examples:
Read all registers of GBTX/1pGBT (I2C address 0x71)
connected to FLX-device GBT link 3:
fice -G3 -I71
Read GBTX/1pGBT register 32 (0x20):
fice -G3 -I71 -a 32 (or: fice -G 1 -I 3 -a 0x20)
Write OxA5 to GBTX/1pGBT register 32 (0x20):
fice -G3 -I71 -a 32 OxA5
Write contents of GBT-conf.txt to GBTX/1pGBT registers:
fice -G3 -I71 GBT-conf.txt
Compare contents of GBT-conf.txt to GBTX/1pGBT registers:
fice -G3 -I71 -C GBT-conf.txt
Read all registers of a secondary 1pGBT (I2C address 0x72)
connected to the EC-link of an 1pGBT connected to FLX-device link 3:
fice -G3 -I72 -e
Read all registers of a secondary 1pGBTv1 or v2 (for v@ add option -0) (I2C address
0x72)
connected to I2C Master 1 (@400KHz) of an 1pGBTv1 (I2C address 0x71)
connected to FLX-device link 3:
fice -G3 -I71 -s72 -m1 -f400

Example of fice output when reading all registers of a GBTX device connected to the GBT link #3 IC-
channel, with I12C address 1 (each line starts with a decimal register address, followed by 16
hexadecimal register byte values):

$ fice -G0 -I1

Opened FLX-device @, firmw FLX712-GBT-2x4CH-220905-2241-GIT:rm-4.11/104
>>> Detected 1pGBTv@/GBTX

>>> GBTX@Lnk@ I2C-addr=0x1: READ all registers

Reply (size=444): Parity 0K

Reg 0x000 (0): f7 dc ef ec 71 bf 7f €9 00 00 00 00 00 00 00 00
Reg 0x010 (16): 00 00 00 00 00 00 00 00 00 02 00 28 00 15 15 15
Reg 0x020 (32): 66 00 0d 42 00 Of 04 08 00 20 00 00 00 00 15 15
Reg 0x030 (48): 15 00 00 00 38 00 00 00 00 00 00 00 00 00 00 15
Reg 0x040 (64): dd 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x050 (80): 00 ff ff ff 00 00 00 15 dd @d 00 00 00 00 00 00
Reg 0x060 (96): 00 00 00 00 00 00 00 00 00 ff ff ff 00 00 00 15
Reg 0x070 (112): dd 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x080 (128): 00 ff ff ff 00 00 00 15 dd 0d 00 00 00 00 00 00
Reg 0x090 (144): 00 00 00 00 00 00 00 00 00 ff ff ff 00 00 00 15

84

Reg 0x0a@ (160): dd 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x0b@ (176): @@ ff ff ff 00 00 00 00 00 70 00 00 00 00 00 00
Reg 0x0c@ (192): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x0d0@ (208): 00 70 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x0e@ (224): 00 00 00 00 00 00 00 dd @d 70 00 00 00 00 00 00
Reg 0x0f0 (240): 00 00 3f 3f 38 00 00 00 @7 00 00 07 00 00 71 ff
Reg 0x100 (256): ff 01 ff ff @1 ff ff 01 ff ff 01 ff ff 00 00 00
Reg 0x110 (272): 00 20 00 00 00 00 00 00 00 15 00 00 00 00 00 00
Reg 0x120 (288): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x130 (304): 00 00 00 00 00 00 00 00 00 4e 4e 4e aa 0a 07 00
Reg 0x140 (320): ff ff ff ff ff 00 00 88 83 88 88 88 01 ff ff 01
Reg 0x150 (336): ff ff 01 ff ff 01 ff ff 01 ff ff 01 ff ff 01 ff
Reg 0x160 (352): ff 01 ff ff @1 ff ff 01 ff ff f8 00 00 aa 00 d2
Reg 0x170 (368): 67 82 e0 81 81 81 a5 00 00 ff cd cd cd 00 00 00
Reg 0x180 (384): 00 00 00 00 aa bb 9f ff ff ff ff ff ff ff 10 00
Reg 0x190 (400): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Reg 0x1a0 (416): 00 00 00 00 00 00 00 00 00 00 00 0a 19 ff 00 61
Reg 0x1b@ (432): ef fb bd fe

Write 0x34 to register 2 of that same GBTX device:

$ fice -GO -I1 -a2 34

Opened FLX-device @, firmw FLX712-GBT-2x4CH-220905-2241-GIT:rm-4.11/104
>>> Detected 1pGBTv@/GBTX

>>> GBTX@ELnk® I2C-addr=0x1: WRITE 0x22 (34) to reg 0x002 (2)

Reply (size=9): Parity OK Reqg 0x002 (2): 22

Read register 2 of the GBTX device:

$ fice -GO -I1 -a2

Opened FLX-device @, firmw FLX712-GBT-2x4CH-220905-2241-GIT:rm-4.11/104
>>> Detected 1pGBTv@/GBTX

>>> GBTX@ELnk® I2C-addr=0x1: READ reg 0x002 (2)

Reply (size=9): Parity OK Reqg 0x002 (2): 22

6.6.2 flpgbtconf

The flpgbtconf tool communicates on the IC channel of an IpGBT link, to read and write registers
on the IpGBT chip at the other end of this link. Optionally flpgbtconf can read/write from/to a
secondary IpGBT via the EC-link of this primary IpGBT. The tool allows the user to read and write
individual IpGBT registers and bit field items in IpGBT registers, by name, as listed and described in
the IpGBT manual. A special case is name list which will result in all known items being displayed
(this may be useful in combination with the 'grep' tool; see example below).

The tool can be considered an addition to fice, which is used to do a 'full' configuration of all
registers of an IpGBT using a configuration file.

85

Example of providing a keyword to flpgbtconf to obtain suggestions for names of existing IpGBT
items:

$ flpgbtconf c1k@

->Item not found, suggested options are:
EPCLK@CHNCNTRH
EPCLK@CHNCNTRH_EPCLK@INVERT
EPCLK@OCHNCNTRH_EPCLK@ODRIVESTRENGTH
EPCLK@CHNCNTRH_EPCLK@FREQ

EPCLK@CHNCNTRL

EPCLK@CHNCNTRL _EPCLK@OPREEMPHASISSTRENGTH
EPCLK@CHNCNTRL _EPCLK@PREEMPHASISMODE
EPCLKOCHNCNTRL_EPCLK@OPREEMPHASISWIDTH

Note that names are case-insensitive, with '-' equivalent to '_', and a name doesn’t have to be

CO

mplete, but has to be unique, so to read one of the items above from an existing IpGBT (the tool

automatically determines if it’s dealing with a v0 or a v1), for example:

$ flpgbtconf -G@ -I71 epclk@chnentrh-epclk@i

Opened FLX-device @, firmw FLX712-LPGBT-2x2CH-230805-1227-GIT:rm-5.0/3446
>>> Detected 1pGBTv1

EPCLKOCHNCNTRH_EPCLK@OINVERT: addr=0x06E (110) size=1bits index=6 RW
"Inverts @ clock output."

=> Read:

Address 0x0@6E: 0x00

EPCLKOCHNCNTRH_EPCLK@OINVERT: 0x0 (0)

Configuring individual items at the same register address:

86

$ flpgbtconf -G@ -I71 epclk@chncntrh-epclk@i 1

Opened FLX-device @, firmw FLX712-LPGBT-2x2CH-230805-1227-GIT:rm-5.0/3446
>>> Detected 1pGBTv1

EPCLKOCHNCNTRH_EPCLK@INVERT: addr=0x@6E (110) size=1bits index=6 RW
"Inverts @ clock output."

=> Read:

Address 0x06E: 0x00

EPCLKOCHNCNTRH_EPCLK@INVERT: 0x0 (0)

=> Write:

Address 0x06E: 0x40

=> Reread:

Address 0x06E: 0x40

EPCLKOCHNCNTRH_EPCLK@INVERT: @x1 (1)

$ flpgbtconf -GO -I71 epclk@chncntrh-epclk@f 2

Opened FLX-device @, firmw FLX712-LPGBT-2x2CH-230805-1227-GIT:rm-5.0/3446
>>> Detected 1pGBTv1

EPCLKOCHNCNTRH_EPCLK@FREQ: addr=0x06E (110) size=3bits index=0 RW

"Sets the frequency for @ clock output.”

=> Read:

Address 0x06E: 0x40
EPCLKOCHNCNTRH_EPCLKOFREQ: 0x0 (0)
=> Write:

Address 0x06E: 0x42

=> Reread:

Address 0x06E: 0x42
EPCLKOCHNCNTRH_EPCLKOFREQ: 0x2 (2)

Then to see the list of all items containing keyword 'CLKO' and their values, one could do this (note:
in this case keyword has to be given in uppercase):

$ flpgbtconf -G@ -I71 1list | grep CLK®O

EPCLK@CHNCNTRH 0x06E RW 8b [7:0] : @x42 (66)
EPCLKOCHNCNTRH_EPCLK@LOWRES 0x06E RW 1b [7] : 0x0 (@)
EPCLKOCHNCNTRH_EPCLK@INVERT 0x06E RW 1b [6] : @Ox1 (1)
EPCLKOCHNCNTRH_EPCLK@DRIVESTRENGTH 0x06E RW 3b [5:3] : 0x0 (@)
EPCLKOCHNCNTRH_EPCLK@FREQ 0x06E RW 3b [2:0] : ©@x2 (2)
EPCLK@CHNCNTRL 0x06F RW 8b [7:0] : 0x00 (@)
EPCLKOCHNCNTRL _EPCLK@OPREEMPHASISSTRENGTH 0x06F RW 3b [7:5] : 0x0 (@)
EPCLK@OCHNCNTRL _EPCLK@OPREEMPHASISMODE 0x06F RW 2b [4:3] : 0x0 (@)
EPCLKOCHNCNTRL _EPCLK@OPREEMPHASISWIDTH 0x06F RW 3b [2:0] : 0x0 (@)

See help text below for the list of options.

Help text of flpgbtconf:

flpgbtconf version 25040400

Read or write an 1pGBT register or register bitfield, by address or name,
optionally from/to a secondary 1pGBT via the primary 1pGBT's EC-channel,
or from/to a secondary 1pGBT via an I2C Master of a primary 1pGBTv1.

The value of the item is read and displayed, and if requested,

written to and re-read and again displayed.

Requires the IC channel (or EC-channel) of the FLX device to be enabled.
Without options -G and -I some information about the selected register
or bitfield is displayed.

"flpgbtconf list' displays all known 'item' names plus additional info

about each item (for either 1pGBTv@ or 1pGBTv1: auto-detected or

forced by means of option -0 or -1), and in combination with options -d/-G/-I
displays the current value of each item of the selected 1pGBT as well.

(NB: for GBTX devices use the fgbtxconf tool).

Usage: flpgbtconf -h|V -d<devnr> -D<dma> -G<link> -I<i2c>
-m<master> -f<khz> -s<i2c> -0|1 -e -X -Z
<name> [<value>]

-h : Show this help text.
-V : Show version.

87

-d <devnr> :
-D <dma>

-f <fregq>
-G <link>
-1 <i2e>

-m <master>:
-s <i2ce>

<name>

<value> :

The 1pGBT also contains a number of control and monitoring channels. There are a few tools

FLX-device number (default: 0).

: FLX-device DMA controller for receiving (default: 0).
: Assume 1pGBTv@, also for 'flpgbtconf list' or

"flpgbtconf <name/addr>"' or '-Z' (default: auto-detect).

: Assume 1pGBTv1/v2 (see -@; default: auto-detect).
: Use the EC-channel (default: IC-channel).
: I2C Master bus frequency, in KHz

(only with -s; 100,200,400 or 1000; default:100).

: 1pGBT link number.
: 1pGBT I2C address (hex).

I2C Master index (only with -s; @,1 or 2; default:0).

: I2C address (hex) of a secondary 1pGBT accessed via an 1pGBTv1

I2C Master (NB: use option -0 to access an 1pGBTv@ like this).

: Debug mode: display bytes of received frames;

also: continue, even when nothing is received (e.g. with -Z).

: Do NOT receive and process/display replies.
: Name of register or bitfield, or hex (@x) or decimal address.

(Name "list" results in output of a list of all known items,
including their current values in a connected 1pGBT chip
when options -G/I are provided).

Value to write to register or bitfield (hex or decimal).

available dedicated to operate some of these; see flpgbtio and flpgbti2c.

6.6.3 fgbtxconf

The fgbtxconf tool is for an GBTX device what flpgbtconf is for an IpGBT device. It communicates
on the IC channel of a GBT link, to read and write registers on the GBTX chip at the other end of the
link. The tool allows the user to read and write individual GBTX registers and bit field items in
GBTX registers, by name, as listed and described in the GBTX manual. A special case is name list
which will result in all known items being displayed (this may be useful in combination with the

'grep' tool).

See help text below for the list of options.

Help text of fghtxconf:

fgbtxconf version 23072500

Read or write a GBTX register or register bitfield, by address or name.
The value of the item is read and displayed, and if requested,

written to and re-read and again displayed.

Requires the IC channel of the FLX device to be enabled.

Without options -G and -I some information about the selected register
or bitfield is displayed.

"fgbtxconf list' displays all known 'item' names plus additional info
about each item, and in combination with options -d/G/I displays

the current value of each item of the selected GBTX as well.

(NB: for 1pGBT devices use the flpgbtconf tool).

88

Usage: fgbtxconf [-h|V] [-d<devnr>] [-D<dma>] [-G<link> -I<i2c>] [-X] [-Z]
<name> [<value>]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device number (default: 0).
-D <dma> : FLX-device DMA controller for receiving (default: 0).
-G <link> : GBT link number.
-1 <i2c> : GBTX I2C address (hex).

-X : Debug mode: display bytes of received frames;
also: continue, even when nothing is received (e.g. with -Z).
-7 : Do NOT receive and process/display replies.
<name> : Name of register or bitfield, or hex (@x) or decimal address.

(Name "list" results in output of a list of all known items,
including their current values in a connected GBTX chip
when options -G/I are provided).

<value> : Value to write to register or bitfield (hex or decimal).

6.6.4 fscai2cgbtx

The fscai2cgbtx tool allows a user to read and write GBTX registers via its I2C port, accessing it
through a selected GBT-SCA chip I2C channel. The functionality of this tool is similar to fice, but for
now works for GBTX only.

See help text below for the list of options.

Help text of fscai2cgbtx:

fscai2egbtx version 23080200

Tool to read or write GBTX registers via an I2C-channel of a GBT-SCA chip,
connected to any FLX-device GBT (2-bit HDLC) E-link:

read or write a single byte from or to the given GBTX register address

or write to multiple consecutive GBTX registers using the contents of a file.
(i.e. ASCII file: 1 (register) byte value (hex) per line,

e.g. the 'TXT' file generated by the GBTXProgrammer tool).

Provide a file name *or* use option -a with an optional additional byte value
to read resp. write a single GBTX register or, without option -a, to read all
registers.

(NB: this tool comparable to fice tool, not fgbtxconf).

Usage:

fscai2egbtx [-h|V] [-d<devnr>] [-e<elink>] [-G<1lnk> [-g<group> -p<path>]] [-R]
[-r] [-W] -C<ichan> -I<iaddr> -a<addr>

[<byte>] | <filename>

-h : Show this help text.
-V : Show version.
= : In combination with <filename>: compare GBTX/1pGBT register

contents to file contents and display the differences.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <1lnk> : GBT-link number.

89

-g <group> : Group number (default: 7=EC).
-p <path> : E-path number (default: 7=EC).

-R : Reset GBT-SCA.
-r : Do not receive and display the GBT-SCA replies.
-W : Read writable registers only (default: all).

-C <ichan> : GBT-SCA I2C channel number.
-1 <jaddr> : GBTX I2C address (hex).
-3 <addr> : GBTX register address (decimal or hex, Ox.. or x..) to read or write.
<byte> : Byte value (decimal or hex, Ox.. or x..)
to write to GBTX register <addr> (option -a).
<filename> : Name of file with GBTX (hex) register data to compare against,
or to write to consecutive registers (if one value per line;
also accepts files with address+value (both hex) per line,
separated by a space.
=> Examples:
Read all registers of GBTX (I2C address 1) connected to GBT-SCA I2C-channel 0,
GBT-SCA connected to FLX-device GBT link 3 EC-link:
fscai2cgbtx -G3 -I1 -CO (or: fscailcgbtx -eff -I1 -C0)
Compare contents of GBT-conf.txt to GBTX registers:
fscai2egbtx -G3 -I1 -CO -c GBT-conf.txt
Read GBTX register 32 (0x20):
fscai2egbtx -G3 -I1 -CO -a32 (or: fscailcgbtx -G3 -I1 -C@ -a0x20)
Write OxA5 to GBTX register 32 (0x20):
fscailegbtx -G3 -I1 -C@ -a32 OxA5
Write contents of GBTX-conf.txt to GBTX registers:
fscai2egbtx -G3 -I1 -C@ GBTX-conf.txt

6.7 GBT-SCA Tools

6.7.1 fec

The fec tool is designed for communication with a GBT-SCA chip present on a remote hardware
system connected to FELIX via a GBT link. The tool allows to send pre-programmed commands to
read out or write to a number of the hardware channels available on a GBT-SCA, such as GPIO, ADC
and DAC. The GBT-SCA can be connected to any 2-bit (HDLC-encoded) E-link of the GBT, besides the
EC channel.

See help text below for the list of options.

Help text of fec:

fec version 21032300
Demo tool for control and read out of various devices on a GBT-SCA
through a GBT link's EC channel or any 2-bit wide, HDLC encoded E-link.
Receives (and displays) GBT-SCA replies, unless option -Z is given

(in that case use e.g. fedump or fdaq to receive the replies).

Usage:

fec [-h|V] [-d <devnr>] [-i <dma>]

[-I1 [-N] [-G <1nk>] [-g <group>] [-p <path>]
[-t <ms>] [-x <par>] [-A] [-C] [-R] [-T] [-P

<secs>] [-X] [-Y <seq>] [-Z] [<ops>]

90

-h : Show this help text.

-V : Show version.

-d <devnr> : FLX-device to use (default: 0).

-i <dma> : FLX-device DMA controller for receiving (default: 0).
-1 : USE interrupt to receive data (default: polling)

-N : Receiver resets DMA at start-up (default: no reset).
-G <Ink> : GBT-link number (default: 0).

-g <group> : Group number (default matches GBT EC 'group' = 7).

-p <path> : E-path number (default matches GBT EC 'path' = 7).

-r <repeat>: Number of GPIO/ADC/DAC operations to perform (default: 1).

-A : Use SCA-V1 ADC commands (default: SCA-V2 ADC).

-C : Send GBT-SCA connect (HDLC control).

-R : Send GBT-SCA reset (HDLC control).

-T : Send GBT-SCA test (HDLC control).

-t <ms> : Time between some of the ops, in ms (default: 100).

-P <secs> : Enable FromHost (circular) DMA then pause for <secs> seconds
(for DMA check/debug; default: no pause)

-X : Use continuous-mode DMA for upload (default: single-shot).
-x <par> : Parameter to use in operations, e.g. GPIO number, ADC or DAC channel
(default: 0).
-Y <seq> : Use <seg> as first HDLC 'receive sequence number'.
(to keep receiving side happy in consecutive calls)
-7 : Do NOT receive and display the GBT-SCA replies.
<ops> : String of chars indicating which operation(s) to perform:

0=GPI0-out, i=6PI0-in, a=ADC, d=DAC, I=I2C (no-string=default: none).

Examples:
Blink an LED on a VLDB (here connected to GBT link #3, EC-channel)
on GBT-SCA GPIO #18 (the other LED is on GPIO #21) 20 times
with a rate of 5Hz (100ms ON, 100ms OFF):

fec -G3 -t100 -r20 -x18 o
Read GPIO inputs (GBT-SCA on GBT-link #3's EC-channel) 20 times
with a rate of 10Hz:

fec -G3 -t100 -r20 i

Example: on the VLDB with GBT-SCA connected to the EC-channel of GBT link #3 blink one of the
LEDs (connected to GPIO #18; the other one is connected to GPIO #21) 25 times (-r 50) with an on
and off period of 100 ms (the last symbol is an 'oh’, which stands for 'GPIO output'):

fec -G3 -r50 -t100 -x18 o

6.7.2 fscaid
The fscaid tool reads out and displays a GBT-SCA chip’s ID register.

Help text of fscaid:

fscaid version 21110900
Tool to read a GBT-SCA's Chip ID.
Usage:
fscaid [-h|V] [-d<devnr>] [-e<elink>] [-E<elinkr>] [-G<1nk>] [-g<group>] [-p<path>]
[-11 [-C] [-R] [-Z]

91

6.

-d <devnr> :
-e <elink> :
-E <elinkr>:

-G <lnk>

-g <group> :
-p <path>

7.3 fscaio

: E-path number (default matches GBT EC 'path'
: Send GBT-SCA connect (HDLC control).

: Send GBT-SCA reset (HDLC control).

: Do not receive and display the GBT-SCA replies.
: Read ID from a GBT-SCA Version 1 (default: V2).

: Show this help text.
: Show version.

FLX-device to use (default: 0).

E-Tink number (hex) or use -G/g/p options.

E-1ink number (hex) for receiving, if different from
the E-link number for sending.

: GBT-1ink number (default: 0).

7).
7).

Group number (default matches GBT EC 'group'

The fscaio tool is used to read and write a GBT-SCA’s GPIO lines, either individually or all 32 in one
operation. Also the direction register can be configured. In addition fscaio can generate a
configurable number of output pulses with a configurable width.

See help text below for the list of options.

Help text of fscaio:

92

fscaio version

23060100

Tool to write and/or read the GBT-SCA GPIO bits and direction register.

Usage:
fscaio [-h|V]
[-i <bi

-d <devnr> :
-e <elink> :
-G <1nk>
-g <group>
-p <path>
-i <bit>

-0 <dir>

-r <rep>
output

[-d <devnr>] [-e <elink>] [-G <lnk>] [-g <group>] [-p <path>]
t>] [-o <dir>] [-C] [-R] [-D] [-E] [-Z] [-H] [<value>]

: Show this help text.
: Show version.

FLX-device to use (default: 0).
E-Tink number (hex) or use -G/g/p options.

: GBT-link number (default: 0).

: Group number (default matches GBT EC 'group'
: E-path number (default matches GBT EC 'path'
: Read or write GPIO bit number <bit> (default: all).

7).
7).

NB: if a single I/0 pin is written to, its direction bit
is set to output (independent of option -0).

: Set GPIO direction register to value <dir> (hex).

: Send GBT-SCA connect (HDLC control).

: Send GBT-SCA reset (HDLC control).

: Generate <rep> pulses up/down or down/up before setting the (single)

to the requested value (for debug/demo purposes).

: Width of the -r pulses, in microseconds [2..1000] (default: 2).

: Do not receive and display the GBT-SCA replies.

: Disable GBT-SCA GPIO channel after operation (default: leave enabled)
: Do *not* enable GBT-SCA GPIO channel at start of operation,

assume it already is.

-H : Do not use HDLC delay packet, even if firmware supports it,
use zero-byte packets (for output pulse width, options -r and -t).
<value> : Value to write (0 or 1 for a single GPIO bit,
or up to OxFFFFFFFF otherwise, hexadecimal);

if no value

6.7.4 fscaadc

is provided a read operation is performed.

The fscaadc tool reads out a GBT-SCA’s ADC input channels, displaying raw as well as converted (to
volts) values. In addition, ADC input channel current sources can be selectively enabled for the

read-out.

Example of fscaadc output for a single ADC input scan for a GBT-SCA connected to the EC channel
of GBT link #3 (here: the GBT-SCA on a VLDB):

$ fscaade -C -G3

Opened FLX-device 0, firmw
GBT-SCA connect

ADC enabled

GBT-SCA ADC readings:

0: 57B = 1403 = 0.343
1: 7A7 = 1959 = 0.478
2: 61C = 1564 = 0.382
3: 6C7 = 1735 = 0.424
4: 64B = 1611 = 0.393
5: 76E = 1902 = 0.464
6: 819 = 2073 = 0.506
7: 836 = 2102 = 0.513
8: 791 = 1937 = 0.473
9: 7DB = 2011 = 0.491
10: 71F = 1823 = 0.445
11: 8DB = 2267 = 0.554
12: 857 = 2135 = 0.521
13: 7FF = 2047 = 0.500
14: 6BA = 1722 = 0.421
15: 720 = 1824 = 0.445
16: 60D = 1757 = 0.429
17: 5eC = 1516 = 0.370
18: 7E7 = 2023 = 0.494
19: 892 = 2194 = 0.536
20: 7FF = 2047 = 0.500
21: 859 = 2137 = 0.522
22: 885 = 2229 = 0.544
23: 6CB = 1739 = 0.425
24: 8A2 = 2210 = 0.540
25: 699 = 1689 = 0.412
26: CE1 = 3297 = 0.805
27: 024 = 36 = 0.009
28: 77C = 1916 = 0.468

FLX712-GBT-4chan-2008271931-GIT:rm-4.10/544

< << < < K K K <<

93

29: 000 = 0 = 0.000V
30: FFF = 4095 = 1.000 V
31: A9D = 2717 = 0.663 V (T=30.9C approx.)

See help text below for the list of options.

Help text of fscaadc:

fscaadc version 19031300
Tool to read GBT-SCA ADC input channels and display the readings.

Usage:
fscaade [-h|V]

<msk>] [-A]

[-1 «i

-d <devnr> :
-e <elink> :
-G <1nk>

-g <group>
-p <path>

-c <mask>
-i <index> :

consecutively).
-n <kohm>

connected.
-r <cnt>
-t <us>

6.7.5 fscadac

[-d <devnr>] [-e <elink>] [-G <1nk>] [-g <group>] [-p <path>] [-c

ndex>] [-n <kohm>] [-r <cnt>] [-t <us>] [-C] [-D] [-ET [-RI [-X1 [-Z]

: Show this help text.
: Show version.

FLX-device to use (default: 0).
E-1ink number (hex) or use -G/g/p options.

: GBT-1ink number (default: 0).

: Group number (default matches GBT EC 'group'
: E-path number (default matches GBT EC 'path'
: Use SCA-V1 ADC commands (default: SCA-V2 ADC).

: Enable current sources on the ADC inputs in bitmask <mask>

7).
7).

(disabled again afterwards).
Conversion of ADC input <index> only (default: all 32 inputs

: NTC reference resistance value in KOhm;

for ADC inputs with current source enabled (option -c)
a temperature in Celcius is now calculated assuming they have such NTCs

: Number of times to convert ADC input or inputs (default: 1).

: Microseconds between ADC conversions (default: 200).

: Send GBT-SCA connect (HDLC control).

: Send GBT-SCA reset (HDLC control).

: Disable GBT-SCA ADC after operation (default: leave enabled)

: Do *not* enable GBT-SCA ADC at start of operation, assume it already

: Use continuous-mode DMA for upload (default: single-shot).
: Do not receive and display the GBT-SCA replies.

The fscadac tool sets a GBT-SCA’s DAC output channels, one at a time, or all four at the same time.
In addition it provides an option to sweep through the DAC values for one or all channels within a
configurable time period.

See help text below for the list of options.

94

Help text of fscadac:

fscadac version 23060100
Tool to set and/or read back GBT-SCA DAC outputs,
all at the same time or a single one (option -i).
In addition it can do a sweep through the DAC range
for one or all DAC outputs (option -s)
within a configurable time period (option -t).
Usage:
fscadac [-h|V] [-d <devnr>] [-e <elink>] [-G <lnk>] [-g <group>] [-p <path>]
[-i <index>] [-s] [-t <ms>] [-C] [-R] [-D] [-E] [-Z] [-H] [<value>]
: Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <Ink> : GBT-link number (default: 0).
-g <group> : Group number (default matches GBT EC 'group' = 7).
-p <path> : E-path number (default matches GBT EC 'path' = 7).
-i <index> : DAC index (@=DAC_A,1=DAC_B,2=DAC_C,3=DAC D) to use (default: all).

-S : Sweep DAC value for the given DAC output(s).
-S : As -s, but send all DAC commands in one DMA operation,
using delay packets instead of usleep().
-t <ms> : Sweep time from DAC value @ to 255, in milliseconds,
when option -s given (default: 1000).
-C : Send GBT-SCA connect (HDLC control).
-R : Send GBT-SCA reset (HDLC control).
-1 : Do not receive and display the GBT-SCA replies.
-H : Do not use HDLC delay packet, even if firmware supports it,
use zero-byte packets (in combination with -S).
-D : Disable GBT-SCA DAC after operation (default: leave enabled)
-E : Do *not* enable GBT-SCA DAC at start of operation, assume it already
is.
<value> : DAC value (decimal or hex, 0x.. or x..) to set.
6.7.6 fscai2c

The fscai2c tool provides low-level access to 12C-devices connected to GBT-SCA I2C channels, with
control over register address size (1 or 2 bytes), register content size and 7-bit or 10-bit addressing.

See help text below for the list of options.

Help text of fscai2c:

fscai2c version 25012900
Tool to read or write from an I2C device register
on any I2C port of a GBT-SCA chip connected to any FLX-device E-link
(the latter given by options -G/g/p or option -e)
Usage:
fscai2e [-h|V] [-d<devnr>] [-e<elink>] [-G<1nk>] [-g<group>] [-p<path>]
[-f<freq>] -C<ichan> -I<iaddr> [-t] [-a|A<addr>] [-r<nbytes>]

95

[-D] [-E] [<value-to-write>]
: Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <lnk> : GBT-link number (default: 0).
-g <group> : Group number (default matches GBT EC 'group'
-p <path> : E-path number (default matches GBT EC 'path’
-C <ichan> : GBT-SCA I2C channel number.
-f <freq> : I2C bus frequency, in KHz (100,200,400 or 1000, default: 400).
-I <jaddr> : I2C device address (decimal or 'Ox.."' for hexadecimal).
-t : Use 10-bit I2C addressing mode.
-a|A <addr>: I2C register address ('a':1-byte, 'A':2-byte).
(decimal or 'Ox..' for hexadecimal).
-r <bytes> : Register content number of bytes (default: 1; max 16).
-D : Disable GBT-SCA I2C port after operation (default: leave enabled)
-I= : Do *not* enable GBT-SCA I2C port at start of operation,
assume it already is.
<value-to-write>: hexadecimal value to write, the number of nibbles determining
how many bytes to write.

7).
7).

=> Examples:
Read 2-byte register 6 from a device with I2C address 5 on GBT-SCA I2C channel 4
connected to the EC channel of GBT #3:

fscai2e -G3 -C4 -I5 -ab -r2
Write 0x1234 to 2-byte register 6 from I2C device address 5 on GBT-SCA I2C channel 4
connected to the EC channel of GBT #3:

fscai2c -G3 -C4 -I5 -ab 1234

6.7.7 fscads24

The fscads24 tool serves to demonstrate more-or-less strict timing capabilities, as required for the
1-Wire protocol, that FELIX is capable of, operating through a GBT-SCA GPIO device through a GBT
link’s EC-channel or other 2-bit HDLC E-link.

The fscads24 tool reads out the unique 64-bit ID from a device from the 1-Wire DS2400-family,
connected to a GPIO pin of a GBT-SCA.

Example of fscads24 output, reading from a DS2411 connected to GPIO pin 3 of a GBT-SCA
connected to the EC-channel of FELIX device #0 GBT link #3, including sending an initial 'connect’
command:

$ fscads24 -C -G3 -i3

Opened FLX-device @, firmw FLX712-GBT-4chan-2008271931-GIT:rm-4.10/544
GBT-SCA connect

1D:

01 63 41 a0 17 00 00 1a

Replies received: 288

See help text below for the list of options.

96

Help text of fscads24:

fscads24 version 23060100
Tool to read out the 64-bit ID from a 1-Wire DS24xx chip

using a GBT-SCA GPIO Tline.

Usage:

fscads24 [-h|V] [-d <devnr>] [-e <elink>] [-G <lnk>] [-g <group>] [-p <path>]
[-r <ent>] [-C] [-D] [-E] [-RI [-H] [-XI [-Z] -i <pin>

: Show this help text.

-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-e <elink> : E-link number (hex) or use -G/g/p options.
-G <lnk> : GBT-link number (default: 0).
-g <group> : Group number (default matches GBT EC 'group' = 7).
-i <pin> : Use GPIO line <pin> for the 1-Wire protocol ([0..31]).
-p <path> : E-path number (default matches GBT EC 'path' = 7).
-r <ent> @ Number of times to read the ID (default: 1).

-C : Send GBT-SCA connect (HDLC control).
-R : Send GBT-SCA reset (HDLC control).
-D : Disable GBT-SCA GPIO after operation (default: leave enabled)
-E : Do *not* enable GBT-GPIO at start of operation, assume it already is.
-H : Do not use HDLC delay packet, even if firmware supports it,
use zero-byte packets.
-X : Use continuous-mode DMA for upload (default: single-shot).
-7 : Do not receive and display the GBT-SCA replies.
6.7.8 fscajtag

The fscajtag tool is used to program a 'bit' file into a Xilinx FPGA connected to the JTAG port of a
GBT-SCA.

Without a file name it reads and displays the connected FPGA’s ID and status register contents
(optionally the status bits are individually listed and named).

(Note that a version of this tool is available in the ATLAS DCS software for GBT-SCAs, interfacing to
the E-link to the GBT-SCA via felix-star and netio).

See help text below for the list of options.

Help text of fscajtag:

fscajtag version 19061800
Tool to program a bit-file into a Xilinx 7-Series FPGA connected to the JTAG port
of a GBT-SCA, connected to any FLX-device GBT (2-bit HDLC) E-Tink.
The FPGA may be part of a JTAG chain containing multiple devices;
the tool has options to take this into account.
If a bit-file name is not provided the ID-code and Status register
of the FPGA are read out and displayed.
Usage:
fscajtag [-h|V] [-D] [-d <devnr>] [-e <elink>] [-G <lnk> [-g <group> -p <path>]]

97

[-c] [-R <rate>] [-r] [-s]
[-x <devs> -X <ibits> -y <devs> -Y <ibits> -z <instr>]
[<filename>]

-G <lnk>
-p <path>
-R <rate>

-x <devs>

-y <devs>

-z <instr> :

<filename>

: Show this help text.

: Show version.

: Use continuous-mode FromHost DMA (default: single-shots).
-d <devnr> :
: Enable debug mode: display all GBT-SCA replies.
-e <elink> :

FLX-device to use (default: 0).

E-Tink number (hex) or use -G/g/p options.

: GBT-1link number.
-g <group> :
: E-path number (default: 7=EC).

: JTAG clock rate, in MHz, 1,2,4,5,10 or 20 (default: 20).
: Do NOT receive and process/display GBT-SCA replies.

: Display FPGA Configuration register bits.

: Number of devices preceding the FPGA in the JTAG chain.
-X <ibits> :

Group number (default: 7=EC).

Total number of preceding BYPASS instruction bits, or
(with option -z) the number of instruction bits per device.

: Number of devices trailing the FPGA in the JTAG chain.
-Y <ibits> :

Total number of trailing BYPASS instruction bits, or

(with option -z) the number of instruction bits per device.
The BYPASS instruction value for each of the preceding

and trailing devices (when unequal to only '1'-bits).

: Name of .bit file containing the FPGA configuration.

6.7.9 fxvcserver

The fxvcserver tool connects to a selected FELIX device E-link connected to a GBT-SCA and listens
for an XVC protocol connection from a Vivado Hardware Manager in order to relay data to and
from a Xilinx FPGA connected to the JTAG port of the GBT-SCA device, allowing to run the usual
firmware programming and debugging operations from a Vivado session, on the user’s remote

front-end electronics.

(Note that a version of this tool is available in the ATLAS DCS software for GBT-SCAs, interfacing to

the E-link to the GBT-SCA via felix-star and netio).

See help text below for the list of options.

Help text of fxvcserver:

fxveserver v20082600

Relays Xilinx XVC protocol JTAG bit streams to and from the JTAG port of a GBT-SCA,

through its connection to a FELIX system.

Usage:

fxveserver [-h|V] [-v] [-d <devnr>] [[-e <elink>] | [-G <lnk> [-g <group> -p <path>]]
[-P <portnr>] [-R <rate>]

-h
-V
-V

-d <devnr> :

98

Show this help text.

: Show version.

Be verbose (for debugging only).
FLX-device to use (default: 0).

-e <elink> : E-link number (hex) or use -G/g/p options.

-G <lnk> : GBT-link number.

-g <group> : Group number (default: 7=EC).

-p <path> : E-path number (default: 7=EC).

-P <portnr>: IP port number to listen on (default: 2542).

-R <rate> : JTAG clock rate, in MHz, 1,2,4,5,10 or 20 (default: 10).
In Vivado's Hardware Manager in the TCL Console type "connect_hw_server"
(if necessary), followed by "open_hw_target -xvc_url <address>:<portnr>"
to connect to a Xilinx FPGA connected to the GBT-SCA JTAG port,
with <address> and <portnr> the IP address and port number
of the FELIX host running this fxvcserver.

6.7.10 fscareply

The fscareply tool takes a sequence of byte values (typically copied from some hex dump of data
received from a FELIX device), and parses them as a GBT-SCA reply or request frame and displays

information about the various items in the frame.
See help text below for the list of options plus some examples.

Help text of fscareply:

fscareply version 22062100
Tool to parse and display a sequence of bytes as a GBT-SCA reply frame,
optionally as a request (command) frame (option -c)
or as a sequence representing an IC frame (option -I).

It will indicate the CTRL byte, transaction ID, channel, error byte,
data size and data word, if any.
Note that the length (LEN) word in a GBT-SCA reply has little meaning,
the actual number of bytes in the message defines the size of it.

In addition the type of error, if any, will be indicated,
and whether the frame contains an incorrect CRC.

Usage:

fscareply [-h|V] [-c] [-I] [-r] [<byte@>] [<bytel>] ...

- : Show this help text.

-V : Show version.

- : Interpret the sequence as a GBT-SCA (or IC) *request* frame.

-1l : Interpret the sequence as an *IC* frame.

-r : Reverse the byte order before interpretation.
<byteX> : Byte X of the reply frame to be parsed (provide it as hex numbers)
Examples:

> fscareply 00 0e 7d 00 00 03 00 fe eb fb
CTRL=@E(r=0,s=7) TRID=125 Chan=CONF ERR=00 LEN=3 data=0xFE00

> fscareply 00 ec 28 14 00 06 00 00 f3 @b fd 9b
CTRL=EC(r=7,s=6) TRID=40 Chan=ADC ERR=00 LEN=6 data=0x00000BF3

Bytes provided in reversed order:

99

> fscareply -r 5c 09 06 00 13 36 ec 00
@ ec 36 13 @ 6 9 5¢ : CTRL=EC(r=7,s=6) TRID=54 Chan=JTAG ERR=00 LEN=6

Indication of a CRC error (could be in CRC itself or in the data bytes),
(here CRC has been changed from 095C to 195C):

> fscareply 00 ec 36 13 00 06 19 5c

CTRL=EC(r=7,s=6) TRID=54 Chan=JTAG ERR=00 LEN=6 ###CRC=095C

6.8 Tools for IpGBT Control and Monitoring Channels

6.8.1 flpgbtio

The flpgbtio tool is used to read and write an IpGBT’s GPIO lines, either individually or all 16 in one
operation. Also the direction, pull-up/down and drive strength registers can be configured. In
addition it can generate a configurable number of output pulses with a configurable width.

See help text below for the list of options.

Help text of flpgbtio:

flpgbtio version 22040600
Tool to write and/or read the 1pGBT GPIO bits and direction register,
as well as other GPIO-related registers (pull-up/down, drive strength)
Usage:
flpgbtio [-h|V] [-D<dma>] [-d<devnr>] -G<link> -I<i2c> [-0|1] [-e]
[-i<bit>] [-o<dir>] [-E<ena>] [-U<up>] [-S<s>] [-X] [-Z] [<value>]
: Show this help text.
-V : Show version.
-d <devnr> : FLX-device number (default: 0).
-D <dma> : FLX-device DMA controller for receiving (default: 0).

-0 : If 1pGBT, assume v@ (default: auto-detect).
-1 : If 1pGBT, assume v1/v2 (default: auto-detect).
-e : Use the EC-channel (default: IC-channel).

-G <link> : 1pGBT link number.
-I <i2¢> @ 1pGBT I2C address (hex).
-i <bit> : Read or write GPIO bit number <bit> (default: all).
NB: if a single I/0 pin is written to, its direction bit
is set to output (independent of option -0).

-0 <dir> : Set GPIO direction register to value <dir> (16-bit hex).
-E <ena> : Set GPIO pull-up/down enable register to value <ena> (16-bit hex).
-U <up> : Set GPIO pull-up/down register to value <up> (16-bit hex).
-S <s> : Set GPIO drive strength register to value <s> (16-bit hex).
-r <rep> : Generate <rep> pulses up/down or down/up before setting
the (single) output to the requested value (for debug/demo purposes).
-t <us> : Width of the '-r' pulses, in microseconds [2..1000] (default: 2).
-X : Debug mode: display bytes of received frames.
-7 : Do NOT receive and process/display replies.
<value> : Value to write (@ or 1 for a single GPIO bit,

or up to OxFFFF otherwise, hex);

100

if no value is provided a read operation is performed.

6.8.2 flpghti2c

The flpgbti2c tool provides low-level access to 12C-devices connected to an IpGBT I12C Master, with
control over register address size (1 or 2 bytes), and register content size (up to 4 bytes).

See help text below for the list of options.

Help text of flpghti2c:

flpgbti2c version 22101100
Tool to read or write from and to an I2C slave device (register)
through an 1pGBT I2C Master connected to an FLX-device link.
NB: suitable for 1pGBTv1 or v2 only, for the time being.
Usage:
flpgbti2c [-h|V] [-d<devnr>] -G<link> -I<i2c> [-f<freg>]
-m<master> -i<iaddr> [-a|A<addr>] [-r<nbytes>] [-X] [-Z]
[<value-to-write>]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device to use (default: 0).
-G <link> : 1pGBT-1link number.
-I <i2¢> @ 1pGBT I2C address (hex).
-m <master>: I2C Master index (0,1 or 2; default:0).
-f <freq> : I2C bus frequency, in KHz
(100,200,400 or 1000, default: 400).
-1 <iaddr> : I2C device address (hex).
-a|A <addr>: I2C register address ('a':1-byte, 'A':2-byte).
(decimal or 'Ox..' for hexadecimal).
-L : In case of 2-byte address (-A) LSByte first (default: MSB first)
-r <nbytes>: Number of register/data bytes,
for now limited to 4 (default: 1).
-X : Debug mode: display bytes of received frames;
also: continue, even when nothing is received
(e.g. in combination with option -Z).
-7 : Do NOT receive and process/display replies.
<value-to- wr1te> value to write (decimal or 'Ox..' for hexadecimal).

=> Examples (with 1pGBTv1/v2 I2C address 0x70):

Read 2-byte register at address 6 (1-byte address)

from I2C device with I2C address 0x30 using 1pGBT I2C Master 1:
flpgbti2c -G3 -I70 -m1 -i30 -ab -r2

Read 1-byte register at address 6 (2-byte address)
from I2C device with I2C address 0x30 using 1pGBT I2C Master 1:
flpgbti2c -G3 -I70 -m1 -i30 -A6 -r1

Write 0x1234 to 4-byte register at address 6 (2-byte address)
to I2C device with I2C address 0x30 using 1pGBT I2C Master 1:

101

flpgbti2c -G3 -I70 -m1 -i30 -A6 -rd 0x1234

6.8.3 flpgbtds24

This tool serves to demonstrate more-or-less strict timing capabilities, as required for the 1-Wire
protocol, that FELIX is capable of, operating on an IpGBT GPIO device through the 1pGBT link’s EC-
channel.

(For more details about the workings of the tool see fscads24).
See help text below for the list of options.

Help text of flpghds24:

flpgbtds24 version 22020400
Tool to read out the 64-bit ID from a 1-Wire DS24xx chip connected to an 1pGBT GPIO.
Usage:
flpgbtds24 [-h|V] [-d<devnr>] [-D<dma>] -G<link> -I<i2c> [-1] [-e] -i<pin> [-r<cnt>]
[-7]
-h : Show this help text.
-V : Show version.
-d <devnr> : FLX-device number (default: 0).
-D <dma> : FLX-device DMA controller for receiving (default: 0).
-1 : Assume 1pGBTv1/v2 (default: 1pGBTv@) ###0BSOLETE
-e : Use the EC-channel (default: IC-channel).
-G <link> : 1pGBT link number.
-I <i2¢> @ 1pGBT I2C address (hex).
-i <pin> : Use GPIO bit <pin> for the 1-Wire protocol ([0..15]).
-r <ent> @ Number of times to read the ID (default: 1).
-Z : Do not receive and display replies.

102

0 :!table: 6

103

7. Felix-star

7.1 Introduction

felix-star is the name given to the suite of applications responsible for data transfers to and from
the FELIX host. In the upstream "to-host" direction, felix-tohost publishes data coming from the
FELIX card to clients according to a publish/subscribe pattern with E-link granularity. In the
downstream "from-host" direction, felix-toflx receives messages for the enabled E-links over the
network and transfers them to the FELIX card for onward transmission to front-end electronics.
Over the network, E-links are identified by a 64-bit number called Felix-ID (fid) that contains both
the local e-link number as well as a detector and connector identifiers.

The matching between active E-links and network addresses is provided by felix-bus. The felix-
bus mapping is described by in hierarchical structure of json files.

The directory used for felix-bus needs to be accessible by all peers i.e. it has to
o reside on a network drive in case the communication happens between different
hosts.

Communication with felix-star over the network is managed by the netio-next library, based on
libfabric and capable of exploiting RDMA technology. The network library supports data
coalescence to reduce the I/O overhead. Messages are accumulated in network buffers called "netio
pages" that are sent either when an occupancy watermark is crossed, or a timeout expires. To
minimise the latency it is possible to explicitly flush pages or avoid buffering altogether selecting
the zero-copy mode. The zero-copy mode allows to send a message from a pre-defined memory
location over the RDMA network without any copy. The main use case of zero-copy mode is the
transfer of big messages (> 0O(10) kB) from the FELIX ToHost DMA buffer onto the network.

Client applications, such as Data Handler or OPCUA-SCA server, should not interface directly with
netio-next but are instead required to use the felix-client-thread C++ interface. This API
automatically reads the connection parameters (e.g. connection mode, number and size of netio
pages) directly from felix-bus to minimise manual configuration. The use of the API is described at:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-interface/master/headers.html

7.2 Architecture

The felix-star architecture is based on different independent processes responsible for supplying
the functions described above, as illustrated in Figure 7.1 . Each device (i.e. PCle endpoint) of an
FLX card supports up to 5 ToHost DMA buffers, 1 FromHost DMA buffer and, for ITk flavours, an
extra Trickle Configuration DMA buffer.

One felix-tohost instance can read multiple ToHost DMA buffers (also belonging to different
devices). By default, one reader thread is spawned for each DMA buffer, but a command line option
allows to use an arbitrary number of thread per DMA buffer to ensure performance scalability.

One felix-toflx instance can write onto multiple FromHost DMA buffers. For each FromHost DMA

104

https://ofiwg.github.io/libfabric/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-interface/master/headers.html

buffer a single-threaded network receiver is created. Trickle configuration DMA buffers are
managed by felix-toflx, started with a dedicated option. One felix-toflx process can either serve
FromHost buffers or Trickle buffers.

felix-register allows a remote client to read or edit the registers of one or more FLX device. For
this purpose, the client API offers dedicated methods to send so-called commands and receive
replies.

All the applications described above use the same logging and monitoring systems. Logging is
printed on the stdout/stderr. Monitoring information is collected in JSON format and is printed
UNIX FIFO. From the FIFO can be read by any user application or by felix-stats2prometheus for
publishing into the stand-alone monitoring system described in Section 7.4. In the next releases,
both Prometheus and the TDAQ Information Service (IS) will be integrated as possible outlets in all
felix-star applications.

Details on each application are presented in 7.3 Felix Star executables, while their orchestration is
discussed in Section 8.

TCP/IP
felix-register > network

Access to FELIX registers

~—
)
2
> -

o 2 E-links
© over
o \

5 Registers R D M A

d o or

“ | o

2
>
)

@]

felix-bus

E-link / network address translation

Logging & Monitoring

ERS, IS (webdag), Prometheus interfaces

Figure 7.1 The architecture of the FELIX star application.
Netio-next TCP/IP backend emulates the RDMA stack and offers a poor

o performance. The adoption of netio3, currently under development, will address
this issue.

105

7.3 Felix Star executables

7.3.1 felix-tohost

To run felix-tohost it is necessary to specify which devices and DMA buffers to read, the directory
for the felix-bus and a network interface. To provide a unique identifier to the published E-links,
the detector identifier (DID) and connector identifier (CID) can be specified. CIDs map to devices,
that on FLX-712 and FLX-182 correspond to to the MTP connectors on the front panel. In the
example below, felix-tohost is configured to read DMA buffers 0,1, and 2 of devices 0 and 1. The
two devices are assigned CID 0x10 and 0x11, respectively. The network interface is priv@ and the
bus directory is created in the user’s home.

felix-tohost --did 0x12 --cid 0x10 --cid 0x11 -d @ -d 1 -D @ -D 1 -D 2 --iface priv@
--bus-dir ~/bus

felix-tohost distinguishes three types of E-links, DAQ, TTC and DCS, for which different network
configurations can be configured. E-link with encoding set to HDLC, as well as IC and EC e-links are
identified as DCS E-links. Only the TTC2H E-link (0x600) is of type TTC: in this case TTC2H blocks
produced by firmware are matched to network buffers to minimize latency. All remaining E-links
are of type DAQ. More details on the network buffer settings are described in Section 7.7.

felix-tohost - FELIX central data acquisition application

Usage:
felix-tohost [options --device=<device>... --cid=<cid>... --dma=<id>...]

General Options:

--bus-dir=DIRECTORY Write felix-bus information to this directory.
[default: ./bus]

--bus-groupname=NAME Use this groupname for the bus. [default: FELIX]

--cid=<cid>... CID (Connector Ids) to set in FID (Felix ID). Can
be used multiple times. [default: device]

--did=<did> DID (Detector Id) to set in FID (Felix ID).
[default: 0]

-d, --device=<device>... Use FLX device DEVICE. [default: 0]
--error-out=<fifo> Write error information to a UNIX FIFO
--free-cmem Free previously booked cmem segment by name-

<device>-<dma>
--iface=<iface> Send data to the interface. [calculated: use --ip
value]

-i, --ip=<ip> Publish data on the ip address IP. [default:

1libfabric:127.0.0.1]
-b, --netio-pagesize=<size> NetIO page size in Byte. [default: 65536]

-B, --netio-pages=<size> Number of NetIO pages. [default: 256]
--stats-out=<fifo> Write periodic statistics data to a UNIX FIFO
--stats-period=<ms> Period in milliseconds for statistics dumps.

[default: 1000]
-7, --help Give this help list

106

-v, --verbose Produce verbose output

--verbose-bus Produce verbose output for bus

-V, --version Print program version
--evloop-type=<type> Event loop type to use. [default: netio-next]
--vid=N VID (Version Id) to set in FID (Felix ID)

[default: 1]

ToHost Options:

-D, --dma=<id> Use DMA descriptor ID. [default: 0]
-c, --cmem=SIZE CMEM buffer size in MB. [default: 512]
--daq-unbuffered DAQ unbuffered mode: zero-copy readout (max 0(100)
kHz rate per link, useful for >0(kB) messages)
-T, --netio-timeout=SIZE NetIO timeout in ms for DAQ traffic. [default: 2]
-w, --netio-watermark=SIZE NetIO watermark in Byte for DAQ traffic. [default:
57344]
--dcs-iface=IFACE Use this network interface for DCS traffic.
[calculated: use libfabric on main iface]
--dcs-pages=SIZE DCS Number of NetIO pages. [default: 64]
--dcs-pagesize=SIZE DCS NetIO page size in Byte. [default: 1024]
-s, --dcs-port=PORT Publish DCS data on port PORT. [calculated: 53500
+ 10*device + dma]
--dcs-size-1imit=LIMIT Truncate DCS messages when size is above LIMIT in
bytes [default: 65536]
--dcs-timeout=SIZE DCS NetIO timeout in ms. [default: 1]
--des-unbuffered DCS unbuffered mode.
--dcs-watermark=SIZE DCS NetIO watermark in Byte. [default: 972]
-1, --11id-check=FORMAT Check L1ID sequence. Formats: 1=TTC2H only,

2=LATOME, 3=FMEMU, 4=FELIG, 5=NSWVMM, 6=NSWTP.
Slow for unbuffered DAQ. [default: 0]

-M, --max-chunk-size=LIMIT Maximum chunk size in Bytes for DAQ traffic.
Larger chunks are truncated. [calculated from network page size]
-p, --port=PORT Publish DAQ data on port PORT. [calculated: 53100
+ 10*device + dma]
-P, --poll-period=us Polling instead of interrupt-driven readout with
the given poll period in microseconds [default: 1000]
--threads=THREADS Number of threads per DMA to read DAQ 1links
[default: 1]
--ttc-netio-pages=SIZE TTC Number of NetIO pages. [default: 64]

--ttc-netio-pagesize=SIZE TTC NetIO page size in Byte. [default: 1536]
--ttc-netio-timeout=SIZE TTC NetIO timeout in ms. Not necessary as TTC2H
buffers are flushed at end-of-block. [default: 0]
--ttc-netio-watermark=SIZE TTC NetIO watermark in Byte. [default: 1248]
-t, --ttc-port=PORT Publish TTC2H data on port PORT. [calculated:
53300 + 10*device + dma]

Report bugs to <https://its.cern.ch/jira/projects/FLXUSERS>.

it can happen that the bus directory <bus-dir>/<bus-groupname> is owned by
(s
O another user and cannot be overwritten. To overcome this situation choose a
w

different group name.

107

o on the client side network parameters are retrieved automatically from the felix
bus.

7.3.2 felix-toflx

felix-toflx advertises the enabled links on the bus and listens for data. Support for E-link
broadcast is supported from software release >= 5.0.1. Received data is encoded in the FromHost
data format and written in the FromHost DMA buffer or Trickle DMA buffer. Network options
passed to felix-toflx are advertised on the felix bus and are picked up by client applications.

felix-toflx - FELIX central data acquisition application

Usage:

felix-toflx [options --device=<device>... --cid=<cid>...]

General Options:
--bus-dir=DIRECTORY
[default: ./bus]
--bus-groupname=NAME
--cid=<cid>...

Write felix-bus information to this directory.

Use this groupname for the bus. [default: FELIX]
CID (Connector Ids) to set in FID (Felix ID). Can

be used multiple times. [default: device]

--did=<did>
[default: 0]

-d, --device=<device>...
--error-out=<fifo>
--free-cmem

<device>-<dma>
--iface=<iface>
value]

=i, --ip=<ip>

libfabric:127.0.0.1]

-b, --netio-pagesize=<size>

-B, --netio-pages=<size>
--stats-out=<fifo>
--stats-period=<ms>

[default: 1000]

-7, --help

-v, --verbose
--verbose-bus

-V, --version
--evloop-type=<type>
--vid=N

[default: 1]

ToF1x Options:

-c, --cmem=SIZE

-p, --port=PORT
10*device + dma]

-u, --unbuffered

108

DID (Detector Id) to set in FID (Felix ID).

Use FLX device DEVICE. [default: 0]
Write error information to a UNIX FIFO
Free previously booked cmem segment by name-

Send data to the interface. [calculated: use --ip
Publish data on the ip address IP. [default:

NetIO page size in Byte. [default: 65536]
Number of NetIO pages. [default: 256]

Write periodic statistics data to a UNIX FIFO
Period in milliseconds for statistics dumps.

Give this help list

Produce verbose output

Produce verbose output for bus

Print program version

Event loop type to use. [default: netio-next]
VID (Version Id) to set in FID (Felix ID)

CMEM buffer size in MB. [default: 20]
Send data to port PORT. [calculated: 53200 +

Use unbuffered mode

-t, --trickle Use trickle mode

Report bugs to <https://its.cern.ch/jira/projects/FLXUSERS>.

7.3.3 felix-register

felix-register can handle commands (get/set and others) via a command E-link and supply
responses via a reply E-link. Both can be accessed easily using the send_cmd function in the felix-
client. Felix-register also monitors a number of vital registers and publishes their content on a
monitoring E-link. Monitored quantities include the FPGA temperature and the alignment status of
links. felix-register can handle any number of devices in one host.

A single instance of felix-register can serve multiple PCI-E endpoints and cards passing as
argument multiple triples of the kind <device> <did> <cid> e.g. @ 0x12 0x10 1 0x12 0x11 2 0x12
0x13 3 0x12 @x14.

felix-register - Receive control data for registers and reply.

Usage:
felix-register [options] <local_ip_or_interface> (<device> <did> <cid>)...

Options:

-h --help Show this screen.

--version Show version.

--bus-dir=<bus-directory> Set bus directory [default: bus]

--bus-groupname=<groupname> Set groupname for bus to use [default: FELIX]

--cmd-port=<N> Set port number for commands to the devices
[default: 53402 + (10 * first-device)]

--pub-port=<N> Set port number for publications from the
devices [default: 53403 + (10 * first-device)]

--log-level=<loglevel> Specify level of logging (trace, debug, info,
notice, warning, error, fatal) [default: info]

--mon-port=<N> Set port number for monitoring of the devices
[default: 53404 + (10 * first-device)]

--mon-interval=<seconds> Set monitoring interval [default: 5]

--mon-regfile=<file> File containing the name of additinal card
registers to monitor [default: ""]

--verbose Show verbose output [default: false]

--verbose-bus Show bus information [default: false]

--no-cmd-channel Do not instantiate a Cmd channel, for testing
only [default: false]

--no-reply Do not reply, for unit tests only [default:
false]

--no-mon-channel Do not start MON channel [default: false]

Arguments:

<local_ip_or_interface> Local IP or interface

<device> Use FLX device

<did> DID (Detector Id) to use in FID (Felix ID)

109

<cid> CID (Connector Id) to use in FID (Felix ID)

Notes:
<device> <did> <cid> triplets should be declared in endpoint-@, endpoint-1
order.
Requests for non-existing endpoint-1 will be routed to endpoint-0: device 1 ->
device @, device 3 -> device 2

Report bugs to <https://its.cern.ch/jira/projects/FLXUSERS>.

7.4 Monitoring

Monitoring information produced by felix-star applications can be visualised on the Grafana
dashboard provided with all software releases starting from 5.1.0. In a nutshell, felix-star outputs
monitoring information in a FIFO, a publisher makes it available over the network, and a container
scrapes and visualises the data.

 Tirst, create a UNIX FIFO on the FELIX host:

mkfifo /tmp/stats

* Run felix-tohost and/or felix-toflx using the option --stats-out /tmp/stats. The same fifo can
be shared by multiple applications.

* Launch the publisher on the same node:
felix-stats2prometheus /tmp/stats

* Set up felix-monitor

The data visualization is provided by felix-monitor. felix-monitor is distributed as a tarball
containing a docker-compose files to start Prometheus and Grafana in containers. These can be run
in any other host in the same network of the FELIX host. The content of the tarball is shown below:

felix-monitor/

—— compose.yml

—— grafana

| —— dashboards

| F—— all.yml

| L—— felix-local.json
L—— datasources
L—— datasource.yml
L—— prometheus
L—— prometheus.yml

A Make sure that the felix-monitor directory is not on AFS. The AFS filesystem does

110

not support Docker/Podman.

Before starting the containers, edit prometheus.yml adding the name of the nodes to monitor. For
example, to set pc-tbed-felix-14.cern.ch as data source replace the default localhost:8000 as
shown below.

static_configs:
- targets:
- pc-tbed-felix-14.cern.ch:8000

To start felix-monitor on an AlmalLinux node, run from within the felix-monitor folder:
sudo podman-compose up -d

The Grafana dashboard will be reachable entering in the URL bar of the browser "localhost:3000 .
A description of the quantities displayed can be found clicking on the info button of the
corresponding panel.

To stop the monitoring run:

sudo podman-compose down -v

o The monitoring information is written on disk in felix-monitor/prom_data.

7.5 Enabling streams

In order to make use of the streaming feature, support must be enabled for the links in question
using feconf or elinkconfig. This will cause felix-star to publish the full set of 256 FIDs
corresponding to the available streams on that link. The stream ID is the last byte in the FID, which
will therefore have the value 0-255 (rather than the default value of 0).

It is then possible to subscribe to a particular FID as normal by additionally setting the last byte to
that StreamID, 0-255. The front-end corresponding to the links in question should then make sure to
put the correct stream ID in the first byte of every packet sent over the link. FELIX will then
guarantee to route the packet correctly to client applications with the appropriate subscription.

7.6 Quick start

Start felix-tohost

mkdir </path/to/bus>

mkfifo /tmp/stats

felix-tohost -d <device> -D <DMA buffer> --bus-dir ~/bus --iface <network interface>
--stats-out /tmp/stats

111

The fids corresponding to the e-links published by felix-tohost are printed on screen. It is possible to
see data going through felix-tohost by running cat < stats To subscribe to one or more e-links you
can use the client application

felix-test-swrod --bus-dir=<path to bus directory> --fid=<fid1> --fid=<fid2>
--fid=... <local-ip>

The remote IP and port for the requested fids are resolved using the content of the bus folder (that
neeeds to be readable by felix-test-swrod). felix-test-swrod will print message rate and counters,
it has options to dump the data messages on screen or in a file.

7.7 Network Parameters

Both felix-tohost and felix-toflx have command-line parameters that configure the number of
network buffer (netio-pages) and their size (netio-pagesize). The number of pages shall not exceed
1024.

Client applications read these settings from the felix-bus and configure themselves accordingly. In
case unbuffered mode is selected in felix-tohost, netio-pages and netio-pagesize determine the
network buffer allocation on the receiving side. When unbuffered mode is used in felix-toflx netio-
pages and netio-pagesize determine the allocation of receiving buffers: in this case netio-pagesize
shall be larger or equal than the largest expected message.

Two additional parameters are relevant on the sender side (be it felix-tohost or a client application)
if data coalescence is used: the page watermark and timeout. The watermark (-w command line
option in felix-tohost) sets an occupancy threshold that causes the buffer to be sent once crossed.
The timeout acts similarly using the lifetime of a partially filled buffer rather than its occupancy.

112

0 :'table: 7

113

8. Orchestration of FELIX applications

8.1 Supervisor

As described in the previous section multiple applications have to be run concurrently to run the
FELIX DAQ system. To manage all these applications the Supervisord orchestrator is used.
Supervisord is a third-party application and is included in the FELIX distribution. The command
supervisord is used to start the orchestrator while supervisorctl is used to control it. The utlity
felix-multivisor allows to control multiple hosts at once. A configuration file that described what
Supervisor has to do is required.

The following subsections describe how Supervisor can be used in the FELIX use case; complete
documentation can be found at http://supervisord.org/

8.1.1 Configuration file

Supervisor is steered by a configuration file that describes all the applications to be managed. A
simple config file that runs two instances of felix-tohost is shown in Listing [sv_example].

The first three blocks are needed to configure Supervisor:

* inet_http_server configures Supervisor to run an HTTP interface that can be used to control it.
This configuration is safe only for a closed network. For general use prefer a UNIX socket that is
protected by read/access rights.

* supervisord contains settings about Supervisor itself, including the user who runs it and other
parameters.

* supervisorctl specifies parameters for the supervisortctl command line utility. In particular
username and password for the HTTP interface are reported to avoid re-typing them.

* rpcinterface:supervisor is necessary and can be left at its default value

The two instances of felix-tohost are included as [program:tohost-d@] and [program:tohost-d1].
Any other application can be included in the same fashion. In detail, startretries=3 tells Supervisor
to restart felix-tohost if it fails at startup for at most three times. The meaning of startup is
specified by startsecs=5. If instead felix-tohost crashes after a while, thus returning an error code,
Supervisor is instructed to restart it automatically by autorestart=unexpected (the restarts after
crashes in the running stage are not counted). Finally stopsignal=INT tells Supervisor that felix-
tohost shall be terminated using a SIGINT signal.

For convenience, multiple programs can be grouped together as shown in the group:40_daq block.
Here the autostart=true attribute makes the programs part of the group start as soon as Supervisor
is launched.

[inet_http_server]
port=*:9001
username=user
password=password

114

http://supervisord.org/

[supervisord]

logfile=/logs/supervisord.log ; supervisord log file
logfile_maxbytes=50MB ; maximum size of logfile before rotation
logfile_backups=10 ; number of backed up logfiles
loglevel=error ; info, debug, warn, trace
pidfile=/tmp/supervisord.pid ; pidfile location

nodaemon=false ; run supervisord as a daemon
user=%(ENV_USER)s ; default user

[supervisorctl]

serverurl=http://localhost:9001
username=user
password=password

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[program:tohost-do]

command=felix-tohost -d @ --free-cmem --bus-dir /tmp/bus --ttc-unbuffered --did 0x00
--cid 0x0000 --iface priv@

autorestart=unexpected

startsecs=5

startretries=3

stdout_logfile=/logs/tohost-d@.out

stderr_logfile=/logs/tohost-d@.err

autostart=false

stopsignal=INT

[program:tohost-d1]

command=felix-tohost -d 1 --free-cmem --bus-dir /tmp/bus --ttc-unbuffered --did 0x00
--cid 0x0001 -iface priv0

autorestart=unexpected

startsecs=b

startretries=3

stdout_logfile=/1ogs/tohost-d1.out

stderr_logfile=/logs/tohost-d1.err

autostart=false

stopsignal=INT

[group:40_daq]

programs=tohost-d@, tohost-d1
autostart=true

° if are not running in a closed network use [unix_http_server] instead of
[inet_http_server].

8.1.2 Control

Supervisor is started with

115

supervisord -c <config file>

All groups and programs whose autostart attribute is set to true will be launched at this point.
Otherwise programs can be started with

supervisorctl -c <config file> start <group>:<program>

To start the whole group of programs use the asterisk as wildcard symbol. To stop replace start
with stop.

The status of applications can be printed on terminal with

supervisorctl -c <config file> status

or visualized pointing the web browser to the HTTP interface (http://localhost:9090 in the example
above). The web interface presents buttons to perform various actions.

To shutdown Supervisor and all associated applications enter

supervisorctl -c <config file> shutdown

8.1.3 Startup sequence

Any kind of program can be managed by Supervisor, including set up commands like flx-init and
feconf. Yet, no execution sequence can be defined in the configuration file. To implement a startup
sequence an Event Listener need to be included. A Supervisor Event Listener can be any
application registered as such that communicates with Supervisor via stdin and stdout. The Event
Listener is informed about the change of status of managed applications and can issue commands
via Supervisor’s HTTP Remote Procedure Call (RPC) interface. The Event Listener written for the
use-case of ATLAS is called felix-supervisor can be found at

https://gitlab.cern.ch/atlas-tdaq-felix/felix-starter/-/blob/master/supervisor/felix-supervisor

felix-supervisor parses the config file and expects groups named accoring to the scheme
<NN_name_blocking>. The NN is a number that determined the order, while the keyword blocking
implies that all applications belonging to the group have to have terminated before the next group
can be started. felix-supervisor is equipped with an interface for the ATLAS ERS system.

felix-supervisor is included in the config file with

[eventlistener:fsupervisor]

command=felix-supervisor -c /det/tdaq/felix-operation/supervisord/supervisord_pc-tbed-
felix-00.cern.ch.conf

events=PROCESS_STATE

buffer_size=25

116

http://localhost:9090
https://gitlab.cern.ch/atlas-tdaq-felix/felix-starter/-/blob/master/supervisor/felix-supervisor

stderr_logfile=/logs/felix-operation/pc-tbed-felix-00.cern.ch-fsupervisor.log
autorestart=false
autostart=true

8.1.4 Generation of many config files

Supervisor config files can be long and contain a lot of hardcoded information. For this reason a
template-based generation system has been put in place. First, FELIX hosts are described in a file
such as

host_name direction device# mode clock
interface detector id connector id elinkconfig DMA number
fully qualified tohost/toflx/both (0-3) gbt/full T/L name
(8 bit) (16 bit) filename use -1 for Phase-I
pc-tbed-felix-07.cern.ch both 0 gbt T
prive 0x07 0x1200 LS_MMG.elc 1
pc-tbed-felix-07.cern.ch both 1 gbt T
prive 0x07 0x1201 LS_MMG.elc -1
pc-tbed-felix-07.cern.ch both 2 gbt L
prive 0x07 0x1200 LS_MMG.elc -1
pc-tbed-felix-07.cern.ch both 3 gbt L
prive 0x07 0x1b00 LS_MMG.elc -1
pc-tbed-felix-04.cern.ch tohost 0 full T
prive 0x04 0x0000 pc-tbed-felix-04-d0.jelc -1
pc-tbed-felix-04.cern.ch tohost 1 full T
prive 0x04 0x0001 pc-tbed-felix-04-d1.jelc -1
pc-tbed-felix-06.cern.ch none 0 full L
prive 0x06 0x0000 pc-tbed-felix-06-d0.jelc -1
pc-tbed-felix-06.cern.ch none 1 full L
prive 0x06 0x0001 pc-tbed-felix-06-d1.jelc -1
pc-tbed-felix-00.cern.ch tohost 0 full L
prive 0x00 0x0000 pc-tbed-felix-00-d@0.jelc -1
pc-tbed-felix-00.cern.ch tohost 1 full L
prive 0x00 0x0001 pc-tbed-felix-00-d1.jelc -1

that is used by the generator felix-supervisord-generate.

Generate supervisord configuration files.

Usage:
felix-supervisord-generate [options] <felix-config-file>

Options:
-t, --template <supervisord-template> Supervisord template [default:
supervisord.conf.jinja]

-d, --destination DIRECTORY Directory for the generates SUpervisor
config file [default: /det/tdaq/felix-operation/supervisord/]
-¢, --config-dir DIRECTORY Directory with the configuration files

117

(elinkconfig) [default: /det/tdaq/felix-operation/config]

-b, --bus-dir DIRECTORY
/det/tdaq/felix-operation/bus]
-m, --tmp-dir DIRECTORY
of supervisord [default: /dev/shm]
-g, --bus-groupname GROUP_NAME
FELIX]
-1, --log-dir DIRECTORY
/logs/felix-operation]
-u, --user USER
[default: username]
-p, --password PWD
[default: password]
-q, --tdaq RELEASE
supervisor [default: tdaq-11-02-00].
--tdag-env
supervisor
--error-out FIFO
errors.json]
--stats-out FIFO
statistics.json]
--error-port PORT
--stats-port PORT
--dcs-watermark SIZE
972]
--dcs-unbuffered
-v, --verbose

Arguments:
<felix-config-file>

Directory for the bus [default:

Absolute directory for the temporary files
Group name to use for the bus [default:
Directory for the logfiles [default:

User of supervisor HTTP interface
Password of supervisor HTTP interface
TDAQ release for felix2atlas and felix-
Generates TDAQ environment for felix-
FIFO for errors [default: /dev/shm/felix-
FIFO for stats [default: /dev/shm/felix-
PORT for errors [default: 53401]

PORT for stats [default: 53400]

DCS NetIO watermark in Bytes [default:

Use unbuffered DCS socket
Verbose output

FELIX configuration file

the generator produces one config file per FELIX host filling up the template. The template in use by
the FELIX team can be found at

https://gitlab.cern.ch/atlas-tdaq-felix/felix-starter/-/blob/master/etc/supervisord.conf.jinja

8.2 Management of multiple FELIX hosts

8.2.1 Autostart via Systemd
To make Supervisor start automatically after a reboot a SystemD unit can be defined. An example

of unit can be found below.

[Unit]

Description=FELIX Supervisor
Requires=tdag-driver.service
After=tdag-driver.service

[Service]

118

https://gitlab.cern.ch/atlas-tdaq-felix/felix-starter/-/blob/master/etc/supervisord.conf.jinja

Type=forking

User=<your favourite user>

LimitMEMLOCK=infinity

LimitNOFILE=65536

ExecStartPre=/bin/echo "Starting Supervisord for FELIX DAQ"
ExecStart=/bin/bash -c "export HOSTNAME="hostname' && source <path to felix
release>/setup.sh && supervisord -c <config file>"
ExecStartPost=/bin/echo "Supervisord for FELIX DAQ started"
ExecStop=/bin/bash -c "supervisorctl -c <config file> shutdown"
RemainAfterExit=true

Restart=on-failure

StartLimitBurst=3

StartLimitInterval=30s

[Install]
WantedBy=multi-user.target

8.2.2 Control multiple hosts

If config files are collected in a single folder and named according to the scheme supervisor_<fully
qualified hostname>.conf (e.g. supervisord_pc-tbed-felix-00.cern.ch.conf) it is possible to use the
felix-multivisor utility toc control all nodes simultaneously.

usage: felix-multivisor [-h] [-p PROC] [-s SVDIR] [-r] action host [host ...]
positional arguments: action Action, e.g. start / stop / status... host Target hostname(s)

optional arguments: -h, --help show this help message and exit -p PROC, --process PROC Target
application or group -s SVDIR, --sdir SVDIR Location of SV config files -r, --serial Process hosts
serially ---

8.3 Useful scripts

8.3.1 felix-get-ip
The felix-get-ip command retrieves the IP for a given interface name. This interface name is

retrieved using the felix-get-config-value command. The IP is used to start felix-tohost.

Return (first or fastest) ip4 address for interface or the list of available
interfaces.

Usage:
felix-get-ip [options] [<interface_name>]

Options:
--fastest Return ip for fastest network
-v, --verbose Verbose output

119

Arguments:
<interface_name> Name of the ethernet interface, see ifconfig

120

0 :'table: 8

121

9. Felix-star client applications

9.1 Felix-Client-Thread API

User applications that wish to communicate with felix-star shall use the felix-client-thread APIL
The felix-client-thread API exposes a small number of methods that allow to subscribe to (and
unsubscribe from) E-links, send data to E-links and get notified when data is received, a connection
succeeds or fails. The felix-client-thread API is only concerned with data and E-links/FIDs:
network parameters are read from the felix-bus, connections are managed internally and re-
connections are automatically attempted if connection is lost.

The API and its use are documented at

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-interface/master/

9.2 Data Handler / SW ROD OKS configuration

Data Handler uses the felix-client-thread to interface with FELIX. Configuring Data Hanlder to use
a given FELIX software release is done with the following OKS snippet.

<obj class="TagMapping" id="ftag">
<attr name="Value" type="string" val="x86_64-centos7-gcc11-opt/1ib"/>
<attr name="SW_Tag" type="enum" val="gcc11-opt"/>
<attr name="Platform" type="enum" val="x86_64-centos7"/>

</obj>

<obj class="SW_ExternalPackage" id="felix-release">
<attr name="Name" type="string" val="FELIX Software Release"/>
<attr name="InstallationPath" type="string" val="/det/tdaq/felix/felix-05-00-01-stand-
alone"/>
<rel name="SharedLibraries">
<ref class="TagMapping" id="ftag"/>
</rel>

The data network interface and bus directory are set as follows.

<obj class="SwRodFelixInput" id="FelixClient">

<attr name="Type" type="string" val="FelixInput"/>

<attr name="DataNetwork" type="string" val="vlan413"/>

<attr name="FelixBusGroupName" type="string" val="FELIX"/>

<attr name="FelixBusDirectory" type="string" val="/det/tdaq/felix-operation/bus"/>
<attr name="FelixBusTimeout" type="u32" val="1000"/>

</obj>

More information about Data Handler / SW ROD can be found at

122

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-interface/master/

https://gitlab.cern.ch/atlas-tdaq-software/swrod

123

https://gitlab.cern.ch/atlas-tdaq-software/swrod

0 :!table: 9 :numbering:

124

10. FAQ, Troubleshooting and User
Resources

This section is aimed at collecting useful information for front-end developers to aid the design and
implementation of front-end firmware/hardware for interaction with FELIX. Useful tips based on
experience so far will also be presented, in a section that will grow over time as more feedback is
received.

10.1 Frequently Asked Questions

1.

Is GBT wide mode supported?

Not currently, can be reviewed on request.

Is GBT 8b/10b mode supported?

8b/10b encoded E-links within GBT frames are supported, but this is different from native GBT
'8b/10b frame mode', which is not supported.

Is the phase of the eight "utility" clocks fixed with respect to the E-link clocks?

Yes, there is a fixed relationship with the E-Link clocks. Note that the eight utility clocks have

worse jitter than the E-link clocks.

Can the GBT output a 40 MHz E-link clock, use that clock in 40 MHz DDR mode for the to-frontend
link, but accept data on the uplink at 160 or 320 Mb/s? (Assuming the FE ASIC multiplies the 40
MHz to 80, 160 or 320 MHz.)

Yes, that is possible. Also the to-frontend link can receive at 80, 160 or 320 Mb/s.

Is there a maximum packet length on the E-link in 8b/10b mode?
No.

Are direct mode a.k.a. unencoded E-links supported in GBT mode?

Not by default in the Phase-I firmware, but this being integrated into Phase-II builds. Please
contact the FELIX team for more information.

Can FELIX support additional (or custom) link protocols as they are developed?

FELIX will not support additional (or custom) link protocols unless well motivated by a detector
requirement. If you think you will need to introduce an additional protocol please contact the
FELIX team before making any final implementation decision.

10.2 Troubleshooting

10.2.1 Known Issues with GBTx

* Links disconnected from any front-end source generate spurious data at random intervals. If

using FELIX with a GBTX, it is strongly recommended that any links which are disconnected
from the front-end be deactivated in elinkconfig. This will prevent spurious data causing
confusion in front-end testing. The effect of spurious data from accidentally or temporarily
disconnected E-links can be minimized by using the packet truncation options.

125

* The loading of the configuration from the e-fuses on power-on is not reliable. The GBTx must be
explicitly configured on every power-on. For GBTX' used only as transmitters, a way to
configure them via I2C must be provided.

10.2.2 IOMMU

If your FLX card is recognized correctly but the DMA transfers are not working, for example fdaq
returns:

== BLOCK ###INVALID HEADER (FF FF FF FF) 0 bytes payload ---

the cause could be the Input-Output Memory Management Unit, IOMMU. To check if IOMMU is
active run

dmesg | grep -e IOMMU -e iommu

if many lines appear, it is active. To disable it see [#subsec:IOMMU].

10.2.3 File Descriptor (FD) Limit

Depending on the setup of your operating system, it may be necessary to change the FD limit to
avoid running out of descriptors and experiencing the following types of error:

For OPC-UA:

terminate called after throwing an instance of 'std::runtime_error' what(): could not connect
to endpoint 128.141.177.225:12351 Aborted (core dumped)

The current FD limit on can be seen by running:
ulimit -aH
and looking for the entry marked 'open files'.

The limit can be changed by modifying /etc/security/limits.conf. It is recommended to set the
limit to the maximum available value, namely 65536.

In general, the recommended values on FELIX and Data Handler are

core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size
(blocks, -f) unlimited pending signals (-i) 186944 max locked memory (kbytes, -1) unlimited max
memory size (kbytes, -m) unlimited open files (-n) 65536 pipe size (512 bytes, -p) 8 POSIX message
queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t)
unlimited max user processes (-u) 186944 virtual memory (kbytes, -v) unlimited file locks (-x)
unlimited ---

126

10.2.4 Debugging Link Status

When using flx-info to check the status of your links, note that this only corresponds to alignment
of incoming (Rx) links, for which it is possible to recover a clock. To check the status of links from
FELIX to other electronics it is recommended to implement dedicated monitoring to check
alignment there

In the case of the FLX-712 card, flx-info does provide incoming and outgoing optical power
measures, so this should be used to confirm whether a link problem is due to a problem with an
optical fibre or light transmission from FELIX.

10.2.5 SMBus Access

SMBus access, as needed for the fflash tool, has been found to not work on Supermicro servers with
an X11SPW-TF motherboard when using default factory configuration. However, Supermicro has
provided custom firmware, which provides this support by means of "ipmitool raw" commands.
This is firmware for the IPMI interface, i.e. not a BIOS, and has to be loaded via the IPMI network
connection. The firmware is available here:

https://drive.google.com/open?id=1eVae35mJhdRZam3WIfW0OYM2cpXpCz5yB

The file to be loaded is BETA_X11DP_Xilinx Kintex UltraScale FPGA_ 982 20190628.bin. Follow this
description to load it:

https://www.supermicro.com/manuals/other/IPMI_Users_Guide.pdf (chapter 2-99)

The following test with fflash has been done using the latest BIOS and after reloading the BETA
firmware. Thanks to Henk Boterenbrood for performing the test.

The help information reported by fflash -h is as follows:

fflash version 21020800

Tool for loading a firmware image from one of the partitions
of the onboard flash memory of an FLX-712 into the card's FPGA,
issueing commands to the host system I2C bus to achieve this.

A subsequent hotplug procedure or machine reboot is required.

Usage: fflash [-h|V] [-q] -f<flashnr>
[[-L|I] [-U|P -d<devslot>] [-S] [-b<busnr>] [-r<chan>] [-R<raddr>]
[-s<saddr>] [-u<uaddr>] [-T<sec>]]

-h : Show this help text.

-V : Show version.

-q : Be quiet (only errors will be displayed).

-f <flashnr>: Flash memory segment partition [0..3] selection (no default).

-1 : Generate an INIT_B pulse on the FLX-card (to reset flash devices).
-L : Load firmware from the given flash partition into the card.

The following options are relevant in conjunction with the -L and/or -I option:
-b <busnr> : I2C bus number (default=0).
-r <chan> : Riser card I2C-switch channel number (default=0)

127

https://drive.google.com/open?id=1eVae35mJhdRZam3WlfW0YM2cpXpCz5yB
https://www.supermicro.com/manuals/other/IPMI_Users_Guide.pdf

(Select I2C-switch address using option -R).

-R <raddr> : Riser card I2C-switch I2C address (default 0x70).

-s <saddr> : I2C-switch I2C address (hex, default=0x77, expected range: 0x70-0x77).
NB: 0x70 already taken by the riser card I2C-switch!

-u <uaddr> : Embedded microcontroller I2C address
(hex, default=0x67, expected range: 0x60-0x67).

-U : Use USB I2C-dongle instead of system SMBus
(requires scripts i2cset.py and i2cget.py installed in /opt/flx).
-P : Use 'ipmitool' to access system SMBus.
INB: use -d option to select 'device slot': 1 or 2.
-T <sec> : Set 'Prog-done' timeout [s] (default: 7)
-d <devslot>: Device slot (1 or 2), only in combination with -P.
-S : Precede calls to i2cget/set or ipmitool with 'sudo'.

(default: 'sudo' not used; applies to options -L|I|P|U).
Examples:
Load flash memory image partition #2 into the card:
fflash -f2 -L

Load flash memory image partition #2 into the card, using I2C-bus #1,
riser card I2C-switch channel #@, FLX-card I2C-switch address 0x75 and
FLX-card microcontroller I2C-address 0x65:

fflash -f2 -L -b1 -r@ -s75 -ub5

How to determine the I2C-switch and uC I2C addresses
(options -s and -u respectively):

Note 1: there is an I2C-bus number (option -b) to select as well,

which is assumed to have the value '1' (following '-y') in the examples below.
Note 2: in the standard FELIX server there is an additional I2C-switch

on the socalled riser card; its channel is selected using option -r;

its I2C address (default 0x70) can be selected using option -R;

it means that the 2 FLX-cards in such a server may have identical

'-s' and '-u' addresses, i.e. most likely their defaults

while the riser card setting is: 'top' position = -r @, 'bottom' = -r 1.

"sudo i2cdetect -y 1' should show you an address in the range 0x70-0x77,
let's say @0x77; this is then the address to use in option -s;
subsequently run 'sudo i2cset -y 1 @x77 1' to set the I2C-switch
causing an additional address in the range 0x60-0x67 to appear

in the output of 'sudo i2cdetect -y 1', so run that command again;

this is the address to use in option -u.

On the FLX-712 dipswitch J14 configures the '-s' and '-u' addresses:
switch 1-3 to set 3 LSBs of '-s', i.e. 0x70-0x77
switch 4-6 to set 3 LSBs of '-u', i.e. Ox60-0x67

Example of the use of fflash to configure the FPGA from partition 2 of the FLASH memory (the
program has to be run using sudo due to the use of "sudo ipmitool" commands):

fflash -f 2 -P -L -d 2 -u 63 -s 76

128

Parameters:
-f 2: partition 2
-P: use of ipmitool

-L: load firmware from FLASH memory
-d 2: card in slot 2 from riser

-u 63: i2c address of card is 0x63 (can be set with jumpers on the card)

-s 76: address i2c switch on riser is 0x76

Output program with these command line parameters for our machine:

=> Load firmware partition 2 (I2C via IPMI: switch=@xec, u(C=0xcb):

sudo ipmitool raw 0x30 0x70

sudo
sudo
sudo
sudo
sudo

Prog
sudo

ipmitool
ipmitool
ipmitool
ipmitool

ipmitool

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

done (time: 1320 ms)

ipmitool

raw 0x30 0x70

sudo ipmitool raw 0x30 0x70

0xd5 27 1 2 236

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 236

=> Pulse INIT_B (I2C via IPMI: switch=0xec,
sudo ipmitool raw 0x30 0x70

sudo

sudo

sudo

sudo

sudo

sudo

ipmitool
ipmitool
ipmitool
ipmitool
ipmitool

ipmitool

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

raw 0x30 0x70

0xd5 27 1 2 236

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 198

0xd5 27 1 2 236

01

0 17 0 16
0 16 56

0 17 48
018 0
112

016 0
00

uC=0xcb):
01

019 4
018 4
019 0
019 4
018 @

00

An attempt to read from an incorrect address looks like this:

sudo ipmitool raw 0x30 0x70 @0xd5 27 1 2 208 1 12

Unable to send RAW command (channel=0x@ netfn=0x30 lun=0x@ cmd=0x70 rsp=0x83): Unknown
(0x83)

129

Form of the ipmitool raw command:

ipmitool raw @x30 0x70 0xd5 27 1 slot address readcount writedata

slot: device slot: 1 or 2

address: 12 address

readcount: number of bytes to read, if 0: no bytes to read
writedata: bytes to be written

NB: The ipmitool raw command requires the addresses to be shifted one bit to the left

10.2.6 Problems with CMEM allocation on boot

Note - if you have a network-booted system (e.g. managed by the ATLAS TDAQ Sysadmins in the
context of the ATLAS testbed infrastructure) then you likely won’t be able to perform the actions
listed below. In this case it might be necessary for you to consider moving to a local boot. Please
contact markus.joos@cern.ch for more advice.

If you have a local boot with RPM driver installation, and are having problems configuring CMEM
to consistently allocate memory on boot please attempt the following:

1. Contact the FELIX team to confirm the required amount of memory for your setup. The typical
recommendation is 4 GB per FELIX card.

> Depending on your setup and use case, it may be necessary to consider adding additional
RAM.

2. If necessary, amend the allocation by opening /etc/init.d/drivers_flx and changing
gfpbpa_size=to the new amount.

3. If this doesn’t help, try configuring systemd such that drivers_flx_sd.service runs as the first
service. This can be achieved as follows:

o Run systemd-analyze plot drivers_flx_sd.service > p.svg; eog p.svg. You will see
something like what is shown in Figure 10.1 .

o Open the file /etc/systemd/system/drivers_flx_sd.service

o Look for the [Unit]‘section. Add the statement ‘BEFORE= at the end of the [Unit] section and
list all of the services that are in front of drivers_f1x_sd (see example below).

> Reboot the computer and check systemd-analyze plot drivers_flx_sd.service > p.svg; eog
p.svg again. Keep adding services to the BEFORE= list until drivers_flx_sd is the first service,
as shown in Figure 10.2

o Try multiple reboots and confirm that this results in stable allocation.

4. If this still does not resolve the issue please contact markus.joos@cern.ch for additional support.

Example modification of [Unit] block:

[Unit]

Description=Start the drivers required by a TDAC PC or SBC

130

mailto:markus.joos@cern.ch
mailto:markus.joos@cern.ch

DefaultDependencies=no
Before=kmod-static-nodes.service systemd-udevd-kernel.socket dev-hugepages.mount

dev-mqueue.mount nss-user-lookup.target machine.slice dm-event.socket user.slice
slices.target

0.0s 1.0s 2.0s 3.0s 4.0s 5.0s €.0s

_i

Figure 10.1 Example output of systemd-analyse.

0.0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s

e —

Figure 10.2 Example output of systemd-analyse with drivers_flx first.

10.3 Guide for System Designers

* For GBT-mode transmission to FELIX, use 8b/10b encoding on the E-links. Avoid the non-
encoded fixed length or variable length formats, because no resynchronization is possible if bits
are lost or repeated on the E-link. Comma symbols are used to align to 10-bit symbols in the bit
stream. They are considered idles and can be inserted in the data stream anywhere. Transmit
"frequent” pairs of commas. This will minimize data loss when FELIX tries to resynchronize
when the symbol boundary is lost due to a missed or repeated bit on the E-link. The out-of-band
SoP (Start-of-Packet) and EoP (End-of-Packet) "K-Characters" are used to delimit packets in
8b/10b E-links.

* The E-link clock, input, and output data rates are independent. The only restriction is that
within a GBT E-link group, all the clocks must have the same frequency, all the data inputs the

131

same data rate and all the outputs the same data rate. However, groups can be setup
independently from each other. Read the GBTx manual carefully to understand the GBTx group
restrictions and bit order. Note, however, that a clock output is only available if its
corresponding Tx is enabled. This means, for example, that a bank running with 320 Mb/s E-
links can supply only two (identical) clocks, but they can be 40, 80, 160 or 320 MHz.

E-link "chunks" or packets are even multiples of bytes or 8b/10b symbols. If an odd number of
bytes are received from the front end, FELIX will add an extra padding byte. In the to-front end
direction, the length must be an even number of bytes.

Synchronization of 8b/10b encoding requires two consecutive comma characters.

In 8b/10b encoded E-links, FELIX can be asked to assert BUSY by sending BUSY-ON and BUSY-
OFF symbols (i.e. out-of-band symbols that can be sent any time, even within data packets). This
should be done only in exceptional cases or at start of run. It should not be the normal mode of
protecting against buffer overflow. Instead, complex dead time should be defined to prevent
most buffer overflows.

The event data sent to FELIX are not expected to be ATLAS-standard event fragments. FELIX just
transports the data to the Software ROD where detector specific software may transform the
data as required and format it into ATLAS-standard event fragments for the ATLAS Read out
system (ROS).

The use of a CRC or the IP checksum is recommended to detect any transmission errors for E-
links run over cables.

In addition to sending all events to the SW ROD, FELIX can send all, or a sample of, events to
other network end points for monitoring. Extra monitoring data may be included as packets
separate from event data packets in the E-link data stream by using FELIX’s stream IDs at the
start of the packet.

Even if there is no hit data associated with a Level-1 Accept, it will still be necessary to send a
packet to the SW ROD that contains at least the L1ID and BCID. Without this is will be almost
impossible to properly recover from error conditions that may arise.

DCS information may be included as packets separate from event data packets in an E-link data
stream by using FELIX’s stream IDs at the start of the packet.

Any 80 Mb/s E-link can be used to connect to a GBT-SCA ASIC. The E-link clock must be
configured to use 40 MHz, i.e. the data is sent in DDR mode.

The "EC" link can be used as an ordinary E-link at 80 Mb/s; its E-link clock may be either 40 or
80 MHz.

TTC: FELIX can send TTC Level-1 Accept information on any E-link declared as a ‘TTC’ E-link.
‘TTC’ E-links can be 80, 160 or 320 Mb/s E-links, to transfer, respectively, 2, 4 or 8 TTC bits on
every BC clock. The contents of the TTC word is defined by the FELIX configuration and can be
chosen from the ten bits in Table 10.4 . Note: In all three cases, the E-link clock can be 40 MHz,
i.e. the BC clock. The data is sent with FIXED latency.

Table 10.4 List of bits decoded from the TTC system that can be chosen to be sent on an E-link defined as a
TTC E-link.

Brest[7] Brest[6] Brest[5] Brest[4] Brest[3] Brest[2] ECR BCR B-chan L1A

132

* Network end-points, such as the SW ROD, can receive Level-1 Accept information (L1ID, BCID,
Trigger Type, etc.) by subscribing to the Level-1 Info (virtual) E-link (also known as the TTC-to-
host E-link). See 6.1.6.3 Configure the to-host Level-1 Accept info E-link (TTC-to-Host E-link).

* The FULL mode firmware has the ability to send XOFF / XON characters on 8b10b encoded
80Mb/s E-Links towards the FULL Mode FrontEnd. For details on the XOFF mechanism and also
the FELIX BUSY system, see BusyXonSpecs. The duration and count that an XOFF was issued on
a particular link can be measured by FELIX. This feature was added in firmware 4.10, for details
see FLX-1171. The measurements can be read using the following commands:

#Read the XOFF duration and count for FULL mode channel @, divide TOTAL_DURATION by
COUNT for an avarage duration.

flx-config XOFF_PEAK_DURATIONQ®

flx-config XOFF_TOTAL_DURATION@®

flx-config XOFF_COUNTQ®

10.4 FELIX Firmware Modules for Front-end Users

The FELIX team have produced a number of self-contained firmware modules which are intended
for integration into front-end firmware both for testing and production purposes. These make it
possible to test data transfer functionality from the output layer of the front-end firmware to FELIX
and beyond, before integrating more of the front-end logic. Modules exist for both GBT and FULL
mode use cases.

10.4.1 Downloading Firmware Source

A full description (including diagrams) of the modules discussed below, as well as the relevant
firmware source, is available on the FELIX project distribution site:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

The site contains multiple revisions, for compatibility with different FELIX firmware versions. GBT-
compatible packages are labeled 'ElinkInterfaceSources' and FULL mode-compatible packages are
labeled 'FullmodelnterfaceSources'. Please consult the documentation within the files for
compatibility information.

10.4.2 GBT Test Modules

From a GBT perspective the modules provided depend on whether the GBT implementation is in an
FPGA or with a GBTX chip. Common to both is a simple data generator module, which generates an
incrementing counter and can be attached to the input port of the GBT module to provide a basic
data source for link testing.

10.4.2.1 GBT-FPGA

For FPGA-based GBT a module will be provided to wrap and drive the GBT link in communication
with FELIX (in both directions). All modules will be fully compatible with the official GBT-FPGA
core[17].

133

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BusyXonSpecs.pdf
https://its.cern.ch/jira/browse/FLX-1171
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

10.4.2.2 GBTx

For GBTx chips all that is needed is to connect the provided data generator to a chip e-port, thus
providing data on one E-link across the GBT.

10.4.3 FULL Mode Test Modules

10.4.3.1 Link Layer Tests

For FULL mode implementations the FELIX developers provide a link layer test package, making it
possible to verify functionality at transceiver level (e.g. clock jitter stability, cleaning and
configuration). Users should be able to integrate this into their front-end design for basic tests
before implementing higher level link protocols.

10.4.3.2 Protocol Tests

Once the link layer is verified, users can integrate the 'stream controller' module, also provided by
the FELIX developers, which manages the FULL mode link protocol and adds e.g. start and end of
packet markers. This is recommended for use not just in testing but also final implementation.
Alongside this module a simple data generator is also provided which can be used for testing data
transfer across the link.

10.4.4 E-link Wrapper

The E-link Wrapper is a standalone FPGA module that implements the E-link interface. It
instantiates the Elink2FIFO and FIFO2Elink components alongside a reset sequence logic. The
Elink2FIFO and FIFO2Elink contain FELIX’s Central Router modules, which manage the TX/RX
datarate (80, 160 or 320 Mbps) and the line code that is being used (8b10b or HDLC). These
components provide a simple FIFO interface to the user that can write the data-to-be-sent into the
FIFO2Elink buffer, and read the received data from the Elink2FIFO buffer. The wrapper can
therefore be used as an interface between an FPGA and FELIX, via a GBTx or a GBT-FPGA
instantiation [17], or as a means of communication between two FPGAs. More information on how
to use the component can be found on [18]. The source files themselves can be found in the
repository which is included in the aforementioned user guide’s References section.

10.5 External Software Resources and Tools

10.5.1 SCA eXtension — FPGA emulation of the SCA ASIC

A standard way to configure a front-end device is via the GBT Slow Control Adapter (GBT-SCA) ASIC
[1]. The SCA ASIC implements several interfaces to communicate with other on-board devices, in
order to configure them and monitor their status. The SCA eXtension (SCAX) FPGA firmware
module [19] [20] emulates the SCA’S communication protocol, in order to transparently provide
access via FELIX to the registers of the FPGA logic in which it is instantiated. The use of SCAX
enables DAQ and DCS to take advantage of the whole back-end OPC-UA software ecosystem to
access FPGA registers. (See Appendix D.) SCAX also supports reading and writing FPGA memories
and FIFOs. More information can be found in Appendix E.

134

10.5.2 IC-over-NetIO

The GBTx ASIC can be configured via a dedicated E-link, the IC E-link, provided that a bi-directional
optical connection between that GBTx and FELIX exists. FELIX offers the ability to configure the
GBTx via the low-level fice command, which accepts a file containing the values of the entire GBTx
address space, and forwards them to the ASIC accordingly. The tool may also write values into
specific registers, or read the values from some of the GBTX' registers.

The IC-over-NetIO application [21] is based on fice’s logic, with the main difference being that it
allows the user to perform the same operations via the NetIO interface, i.e. while the FELIX
software is running, something that the fice application cannot do, being a low-level tool.

At the time of writing the application is in its testing phase, with some minor issues remaining to be
addressed.

135

0 :!table: 10 :numbering:

136

Appendix A: Setting up a TTC System for use
with FELIX

This section is meant to help users of FELIX systems with the set-up of a TTC system. Both the new
ALTT and legacy TTCvx/TTCvi systems are described below.

When connecting a TTC system to the FLX-712 card, note that the hardware is
o sensitive to signals down to -36 dBm and up to -3 dBm. Incoming optical power
should be within this range.

A.1 The ALTI System

The ATLAS Local Trigger Interface (ALTI) is an upgrade to the former TTC system, and replaces the
functionality of the previous LTPi, LTP, TTCVi and TTCvx. The ALTI board provides functionalities
such as rate counters for all TTC signals, per-bcid counters, busy monitoring, a pattern generation,
and as monitoring/synchronization of input signals and programable phase shift of output signals.
For a full list of functionalities and detailed ALTI instructions please see:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/L.evelOneCentralTrigger ALTI

The forward signals are ones sent by the CTP to the sub-systems (BC, ORB, L1A, TTR, BGO, TTYP),
while the backward signals are sent by the subsystems to the CTP (BUSY, calibration). The front
panel of the ALTT also has six SFP connectors for -mode fibre optic transmitter/receiver modules.
The first five SFPs are used for dual-transmitters, while the last one can be used for TTC signal
monitoring.

To test the FELIX with the ALTI card, connect system as shown in Figure A.1 . The cable from the
LEMO connector of the FELIX timing card is plugged into the lower left connector labelled as BUSY
OUT. In the future, it will be possible to configure the BUSY connector on the ATLI for either a NIM
or TTL signal via software. Until this software feature is available in the ALTI, a NIM to TTL adapter
can be used since the FELIX sends a signal compatible with a TTL signal, while the ALTI accepts a
NIM signal by default.

To send TTC signals (L1A for example) from the ALTI to the FELIX, connect top SFP connector (using
a single LC connector), to the ST connector on the FELIX timing card as shown in Figure A.1 . An L.C
to ST adapter will be needed for this.

The bottom SFP connector with the orange connections is connected in loopback mode for ALTI
debugging and can be ignored for the purposes of FELIX commissioning.

137

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI

Send TTC signal to FELIX

BUSY OUT——
to FELIX LEMO

connector
on timing card

Figure A.1 Image of cabled ALTI

A.1.1 Software Setup

Once the hardware is setup log into the SBC hosting the crate and setup the TDAQ and ALTI
software either locally, in testbed, or at Point 1 following instructions at:

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTrigger ALTI#Software

Once the TDAQ and ALTI environment is setup, configure the correct slot for the ALTI using the
command:

testAltiInitial -s 6 -B -b 0x07000000 -R -S -c

where -s 6 is the ALTI slot number, -B -b 007000000 is to change the base address to 0x07000000
and -R -S -c is to reset and check the ALTI board.

A.1.2 Sending TTC Signals with ALTI

First make sure the FELIX is set to TTC clock following instructions in [subsubsec:clocksel] and
[subsubsec:clockRecovery]. After the software is setup you are ready to test sending L1A with the
ATLI. You can use a configuration located here to send the L1A from the ATLI:
/afs/cern.ch/atlas/project/tdaq/levell/ctp/11ct-08-03-05/ALTI/data/cfg_1MHz.dat.

The file sends Level-1 Accepts (L1A) at a 1 MHz rate. You can either copy the file locally or read it
directly from afs if you have access to it from your TTC crate. You can then start sending the L1A by

138

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Software

executing the command below from the SBC:

testAltilnitial -s 4 -R -S -C -f /afs/cern.ch/atlas/project/tdaq/levell/ctp/11ct-08-03-
05/ALTI/data/cfg_1MHz.dat

At this point the FELIX should forward the L1A to the front end, your front end should respond
accordingly and send data through the FELIX, which you can monitor with FELIXcore.

If one would like to stop/start the pattern sending you can follow the commands below from the
SBC, and selecting 7, followed by 3 (to enable L1A sending) or 4 (to disable L1A sending):

menuAltiModule

7 [PAT menu] Pattern generation memory"
" 3 enable pattern generation"

" 4 disable pattern generation"

If a different patter generation or a different frequency of pattern is required, it is possible to
configure one following instructions on

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTrigger ALTI#Scripts_to_generate_of_
Pattern_G

A.1.3 Testing BUSY signal with ALTI

In order to test whether the ALTI is corresponding correctly to a BUSY from the FELIX, it is possible
to force a BUSY in the FELIX using the commands below on the FELIX server:

flx-config set TTC_DEC_CTRL_BUSY_OUTPUT_INHIBIT=0 -d 2

flx-config set TTC_DEC_CTRL_MASTER_BUSY=1 -d 2
To remove the BUSY execute the commands below on the FELIX card:

flx-config set TTC_DEC_CTRL_BUSY_OUTPUT_INHIBIT=0 -d 2

flxcard $./flx-config set TTC_DEC_CTRL_MASTER_BUSY=0 -d 2

The ALTI should respond to the FELIX BUSY by stopping to send the L1A (or other generated)
patterns. To test if the ALTI has stopped sending the patterns, the following can be executed on the
SBC hosting the ALTI:

menuAltiModule

And select 11 CNT menu counters, and then select 1 to read counters. If selecting 1 to read counters
several times does not make the counters go up, it means the ALTI has stopped sending the L1A (or
other pattern), and thus correctly responded to the FELIX BUSY signal.

A.2 The TTCvi/TTCvx (A)

Figure A.2 shows the final cabling of TTCvi and TTCvx modules for a TTC setup with B-channel. The

139

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Scripts_to_generate_of_Pattern_G
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LevelOneCentralTriggerALTI#Scripts_to_generate_of_Pattern_G

A-channel carries the Level-1 Accept; the B-channel carries BCR and the other TTC commands. The
TTCvi-TTCvx pair should have already been tuned. If not, see A.2.1 Tuning a TTC system below.
Note: For a TTCex this may look different. A list of all the materials you will require to set up a TTC
system is presented in Table A.5 .

Figure A.2 Image of cabled TTC system with B-channel connections

Table A.5 Materials needed to set up a TTC system

Item Source Remarks

140

VMEDbus crate

VMEDbus master

Can be rented from the CERN
Electronics Pool (but the Pool
may be out of stock)

TTCvx and TTCex can be rented
from the CERN Electronics Pool
(but the Pool may be out of
stock)

optical attenuator

Can be rented from the CERN
Electronics Pool

We recommend a SBC from
Concurrent Technologies
(ATLAS standard). Support can
be given for VP717, VP917 and
VP-E24 (64 bit, compatible with
TDAQ software release tdaq-05-
05-00 and above).

The TTCvi is no longer in
production. Make sure the VME
base address switches are set to
match your software.

The TTCvx/ex is no longer in
production. The TTCvx has a
LED driver, the TTCex has a
laser driver

Max length of the fibre: TTCvx:
20 m; TTCex: 100 m

If you need to tune the TTCvi-TTCvX pair, you need in addition:

* 2 LEMO cables (5-10 ns)
» 2 LEMO Y-adapters
» 2 LEMO-BNC adapters

Other crates may do as well

TTCvi VMEDbus card

TTCvx VMEDbus card or TTCex
VMEDbus card

3 LEMO cables (1 or 0.5 ns)

1 optical multi-mode (TTCvx) or
single-mode (TTCex) fiber with
ST connectors on both ends

TTCoc & ATLAS (not clear who
to ask; Maybe P. Farthouat) &
TTC fan-out; needed if you have
several FELIX

Needed only for use with a
TTCex without TTCoc. The
optical attenuator has to be a
single-mode attenuator of 3-20
dB and has to be connected
directly to the TTCex output.
The FTPDA-R155 should work
with a TTCvx without
attenuator. In case of a TTCex
an attenuator of 3 dB is
recommended for the FTPDA-
R155. The FTPDA-R155 has a
sensitivity of -31 dBm and
saturates at +1 dBm.

* 2 50 Ohm terminators (Only required if your oscilloscope has no internal termination.)

141

A.2.1 Tuning a TTC system

If your TTCvi-TTCvx pair has not been tuned, follow the instructions in this section. Cable the TTC
system as shown in Figure A.3 . Note: for a TTCex this may look different. For more information
please consult the section "Tuning procedure 2" of the TTCvi manual (http://www.cern.ch/TTC/
TTCviSpec.pdf).

Ignore this module

— To oscilloscope

Figure A.3 Image of cabling for tuning a TTC system

Note: The question has come up if channel A and channel B are correctly cabled in the picture
above. Here is a reply from the TTC expert (Sophie Baron):

A "good" configuration when channel B is not used is indeed to have it tied to "1". And it is right that
having Channel B connected to OUTPUT B gives a static "1" on channel B. However, the termination

142

http://www.cern.ch/TTC/TTCviSpec.pdf
http://www.cern.ch/TTC/TTCviSpec.pdf

scheme at the TTCex inputs keeps as well unconnected channel inputs (both B and A) to "1" by
default (it is negative ECL logic, and the Vin is at -2.08V by default). Therefore, both schemes could
be used identically. One additional remark: of course, if you leave both A and B unconnected at the
input of the TTCex, you will have both channels A and B to "1", and this is not good as the TTCrx
needs to see two different behaviours on A and B to be able to differentiate them (the rule is that
the A-channel must not have more than 11 consecutive "1" whereas B can have any type of
sequence).

This description can be broken down into the following points:

* Connect the TTCvi A/ecl CHANNEL OUT output to the TTCvx A/ecl CHANNEL IN input via a Y-
adapter.

BC delay set to
position 5

LEDs:
BC-EXT and A-
CH on

Figure A.4 Image of cabling for tuning a TTC system

* Connect, via a Y-adapter, one of the TTCvx CLOCK OUT/ecl outputs to the TTCvi CLOCK IN
bc/ecl input. Check that the BC_EXT indicator is lit on the TTCvi as shown below. The TTCvx
internal clock may be used.

* Set the TTCvi trigger mode (= 5) to random at the highest rate (100 kHz) and disable the
event/orbit/trigger-type transfers. In order to do this write 0x7005 to the D16 VMEbus CSR1
register at offset 0x80. This can be done easily for vme_rcc_test. Note: The A24 base address of
the TTCvi in the CERN reference system in TBED is 0x555500. This should light up the TTCvi A-
Ch yellow indicator and the A/ecl CHANNEL OUT output should now carry 25 ns long trigger
pulses.

* With an oscilloscope look at the TTCvx Channel-A input in respect to the clock output, as shown
below.

143

Tek JL. Trig"d M Pos: 30.40ns CH2

Coupling

B Lirnit

Off
200MHz

Yolts/Div

A ﬂ N —
J WY -

CH2 200mY M 10.0ns
4-Apr-16 14:45

CHI (vellow): Channel in
CH2 (blue): Clock out

Figure A.5 Image of cabling for tuning a TTC system

* Adjust the TTCvi BC delay switch such that the rising edges of the Channel-A pulses occur within
4 ns before to 2 ns after the rising edges of the clock signal.

 Setting the delay switch in position 2 and using 1 ns long interconnecting cables for the clock
and the A and B channels corresponds to the above mentioned timing criteria. Note from
Markus Joos: Even though I used 1 ns cables, I had to set the switch to position 5 (see picture
above) in order to meet the requirement of step 5.

A.2.2 Guide to TTC Channel B

The following section describes the structure of the TTC 'B channel' data stream, and how it may be
decoded and operated by users. The information in this section is provided courtesy of Alessandra
Camplani and the LAr group.

The data stream arriving through TTC B channel can be of two types: short broadcast commands or
long individually-addressed commands/data.

Short broadcast commands are used to deliver messages to all TTC destinations in the system, while
long individually-addressed commands/data are used to transmit user-defined data and
instructions over the network to specific addresses and sub-addresses. These two types of
command have different dedicated frame formats, as shown in Figure A.6 :

; IDLE | START [FMT | DATA | cHek | sTop

BROADCAST COMMANDS/DATA
[0[0] 8b CMD/DATA | 5b CHCK [1]

INDIVIDUALLY-ADDRESSED COMMANDS/DATA

[0[1] 14bTTCrx ADDR [E[1] 8b SUBADDR | 8bDATA [7bCHCK [{]

Figure A.6 Image of cabling for tuning a TTC system

144

The difference between the two command types can be illustrated with the example below. When
not in use the B channel IDLE state is set to 1. When a sequence of commands is sent, the data
transmission state changes from 1 to 0. After the first zero received it is possible to distinguish
between short broadcast and long address commands: if the second bit in the stream is a 0 then the
command is a short broadcast, if it is a 1 then the command is of long address type.

IDLE=111111111111
Short Broadcast, 15 bits:
@0TTDDDDEBHHHHH:
T= test command, 2 bits
D= Command/Data, 4 bits
E= Event Counter Reset, 1 bit
B= Bunch Counter Reset, 1 bit
H= Hamming Code, 5 bits
Long Addressed, 41 bits
071AAAAAAAAAAAAAAETSSSSSSSSDDDDDDDDHHHHHHH :
A= TTCrx address, 14 bits

E= internal(@)/External(1), 1 bit
S= SubAddress, 8 bits
D= Data, 8 bits

H= Hamming Code, 7 bits

The short broadcast command type is used to send two important values: the Bunch Counter Reset
(BCR) and the Event Counter Reset (ECR).

The BCR is used to reset the bunch crossing counter, which is increased every clock cycle on the 40
MHz clock. This is a 12-bit counter, also called BCID. A BCR command is sent roughly every 89 us,
corresponding to the time that a bunch needs to do an entire circuit of the LHC. During this time the
BCID counter reach its maximum value, 3564 counts.

The ECR is used to increase the event reset counter. The periodicity of this reset is decided by each
experiment, with ATLAS having it set to 5 seconds. The event reset counter combined with the L1A
counter gives the Extended L1ID (EVID). This is a 32-bit value consisting the L1A counter in the
lower 24 bits, and the event reset counter in the upper 8. Every time that an ECR is received the
upper counter is increased by 1 and the lower part is reset to zero. Every time that a L1A is received
the lower part is increased by 1.

BCID and EVID values are used as a label for the data accepted by the trigger.

The long address command type is used to transport another important value: the Trigger Type
(TType). Each L1A transmission is followed, with variable latency, by an 8-bit TType word. This
word is generated inside the LVL1 Central Trigger Processor (CTP) and distributed from the CTP to
the TTCvi modules for each of the TTC zones in the experiment via the corresponding LTP modules.

The presence of a Trigger Type within long address commands is announced by a sub-address (8
bits) set to 0.

Table A.6 Trigger type 8-bit word: Each bit represent the sub-detector which fired the trigger or the data
type.

145

Sub- physics ALFA FTK LAr Muons Calorimet ZeroBias Random

Trigger demonstr er
ator
Bit 7 6 5 4 3 2 1 0

As shown in Table A.6, each bit has a specific role. In calibration mode, bits 0 to 2 can be used to
distinguish between up to eight different possible types of calibration trigger within each sub-
detector. Bits 3 to 6 are used to indicate which sub-detector or subsystem fired the trigger. Bit 7
represents physics trigger-mode when set to 1, and calibration mode when set to 0.

A.2.3 B channel decoding firmware

An effort is under way to provide a centrally maintained firmware module to decode TTC B-channel
data. In the short term, users are advised to refer to a version produced for LAr front-ends by
Alessandra Camplani. The module code can be found in gitlab:

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc

The code itself is in the folder code_ttc and the files dedicated to TType decoding are:
Bchan_top.vhd, SMdecoding cnt.vhd and TType_decoding. The simulations for this specific part can
be found in the simulation folder. Here there is a testbench for the Bchan_top entity and another
one for TType_decoding entity.

Development of this module is ongoing, with the latome_ttc branch being actively maintained and
kept up-to-date.

A.2.4 Channel B decoding software

In order to test channel decoding, it is recommended that users employ the menuRCDTtcvi
application, provided as part of the ATLAS TDAQ software release. Within the application select
'BGO menu' and then option 13 'send asynchronous command'. From here it should be possible to
select either a short of long command. In the case of a short command simply enter the data word
to be sent. For a long command enter an address 0 (for broadcast), 0 for internal registers,
subaddress 0 for trigger type, and the data word to be sent.

A.2.5 Useful documents
You may find additional useful information in this document from the ATLAS LAr group:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/
CPPM_MIiniFELIX_tests_results_and_TTC_system_experience.pdf

146

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf

0 :'table: 11

147

Appendix B: FLX-712 Technical Information

This appendix will collect technical information for the FLX-712 board.

B.1 Overall Design

The FELIX card hosts 4 MiniPOD transmitters and 4 MiniPOD receivers. Each MiniPOD has 12
channels. The TTC clock from the ADN2814 is cleaned by an Si5345 or LMKO03200. The clean 240
MHz is used as a reference clock for the GTH transceivers. Two of the PCle hardcore EndPoints
within the FPGA are used, with the PEX8732 PCle switch used to connect them to a 16-lane slot.

An on-board 2 Gb FLASH memory can store 4 different firmware bit files. An on-board
microcontroller (which the host can communicate with either via SMBus or through the FPGA and
PCle interface) can be used to select one of the four FLASH memory partitions and trigger FPGA
programming from the image stored in the selected partition.

As shown in Figure B.1 and Figure B.2 , the FPGA has two Super Logic Regions (SLRs), referred to as
devices in the software. To balance resource usage and 54 minimize the number of traces crossing
the boundary each SLR has one 8-lane PCle endpoint. For the 24-ch GBT firmware flavour, banks
126-128 and 131-133 are used.

CTX TOPSIR BOTSIR _, RX

\ C J 7A

- RX \7 X

] " C HP Bank 53 A

- "RX HP Bank 73 X
- D B

- —

s - TX RX
e D B

Figure B.1 24ch configuration.

148

DY

CTX R BOTSIR RX
C ’

. RX — by

—1 | C) HP Bank 53 A

= — W HP Bank 73 TX
2z - D — | =

g TX — B
— o i

Figure B.2 48ch configuration.

B.2 Fibre Mapping and Connectivity

Every FLX-712 comes with PRIZM patches pre-installed, connecting the MTP inputs to the
MiniPODs. These patches are custom made for the card and mean that the users should only need
to connect to their data source to the MTP cable. No internal cabling work on the FLX-712 is
required. The Fibre mapping and pin assignment for channels in each MiniPODs are shown
described in this section. Two configurations are shown: 48 channel and 24 channel.

B.2.1 24 Channel Version

For 24 channel version, the channel number is 12 for each MTP coupler. Figure B.3 / Figure B.4
show how the banks are connected to the MiniPODs in this case.

RXA12 | RXA11 | RXA10 | RXA9 RXA8 RXA7 RXA6 RXAS5 RXA4 RXA3 RXA2 RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXAS TXA4 TXA3 TXA2 TXA1

RXC12 | RXC11 | RXC10 | RXC9 RXC8 RXC7 RXC6 RXC5 RXC4 RXC3 RXC2 RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1

Figure B.3 24ch fibre mapping.

RXA12 | RXA11 | RXA10 | RXA9 RXA8 RXA7 RXA6 RXA5 RXA4 RXA3 RXA2 RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXAS5 TXA4 TXA3 TXA2 TXA1

#1

RXC12 | RXC11 | RXC10 | RXC9 RXC8 RXC7 RXC6 RXC5 RXC4 RXC3 RXC2 RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1
Koy

Figure B.4 24ch fibre mapping looking from MTP coupler.

149

B.2.2 48 Channel Version

For 48 channel version, there are 24-TX and 24-RX in fibre connected to each MTP coupler. Figure
B.5 /Figure B.6 show how the banks are connected to the MiniPODs in this case.

Key
RXA12 | RXA11 | RXA10 | RXA9 | RXA8 | RXA7 | RXA6 | RXA5 | RXA4 | RXA3 | RXA2 | RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXA5 TXA4 TXA3 TXA2 TXA1

RXB12 | RXB11 | RXB10 | RXB9 RXB8 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1

TXB12 | TXB11 | TXB10 | TXB9 TXB8 TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1

Key
RXC12 | RXC11 | RXC10 | RXC9 | RXC8 | RXC7 | RXC6 | RXC5 | RXC4 | RXC3 | RXC2 | RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1

RXD12 | RXD11 | RXD10 | RXD9 RXD8 RXD7 RXD6 RXD5 RXD4 RXD3 RXD2 RXD1

TXD12 | TXD11 | TXD10 | TXD9 TXD8 TXD7 TXD6 TXD5 TXD4 TXD3 TXD2 TXD1

Figure B.5 48ch fiber mappping.

RXA12 | RXA11 | RXA10 | RXA9 RXA8 RXA7 RXA6 RXA5 RXA4 RXA3 RXA2 RXA1

TXA12 | TXA11 | TXA10 | TXA9 TXA8 TXA7 TXA6 TXA5 TXA4 TXA3 TXA2 TXA1

RXB12 | RXB11 | RXB10 | RXB9 RXB8 RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1

TXB12 | TXB11 | TXB10 | TXB9 | TXB8 | TXB7 | TXB6 | TXB5 | TXB4 | TXB3 | TXB2 | TXB1
T 7,5=)Y) 7

RXC12 | RXC11 | RXC10 | RXC9 RXC8 RXC7 RXC6 RXC5 RXC4 RXC3 RXC2 RXC1

TXC12 | TXC11 | TXC10 | TXC9 TXC8 TXC7 TXC6 TXC5 TXC4 TXC3 TXC2 TXC1

RXD12 | RXD11 | RXD10 | RXD9 RXD8 RXD7 RXD6 RXD5 RXD4 RXD3 RXD2 RXD1

TXD12 | TXD11 | TXD10 | TXD9 TXD8 TXD7 TXD6 TXD5 TXD4 TXD3 TXD2 TXD1

Koy

Figure B.6 48ch fibre mapping looking from MTP coupler.

150

0 :!table: 12

151

Appendix C: Guide to FELIX Data Structures

This appendix introduces conceptually the FELIX data formats. The description in terms of byte
fields can be found in Appendix B of The Firmware Specification Document.

C.1 ToHost blocks

In the uplink direction (ToHost), FELIX firmware produces writes E-link data in the ToHost DMA
buffers in blocks of 1 kB. Each block contains packets, called chunks, of a single E-link. If a chunk is
larger than a block, or does not fit in the remaining space in a block, it is split in sub-chunks. If a
block is partially filled, it is padded with zeros and output after a timeout. A sub-chunk can be of

type:
* first: the first part of a chunk;
* middle: not the first nor the last part of a chunk;

* last: the last part of a chunk;

timeout: filling to complete a block upon timeout;

null: padding.

Headers are preceded by blocks. Sub-chunks are either preceded by headers or trailers depending
on the firmware version.

C.2 TTC2H messages

The TTC2H is a virtual e-link whose data is generated by FELIX firmware upon reception of LTI
messages.

C.3 FromHost blocks

Downlink messages are split by software in blocks whose format is parsed by firmware. Each block
has size 32, 64 or 128 depending on the PCle generation (3, 4 or 5). A header contains the E-link
identifier and the payload size.

152

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf

0 :'table: 13

153

Appendix D: Guide to Using FELIX with the
GBT-SCA

This appendix is included thanks to Paris Moschovakos and the DCS team.

D.1 Introduction

The Slow Control Adapter ASIC (GBT-SCA, or SCA for short) is part of the GBT chip-set and is
dedicated to the slow control of the front-end boards. It features several sub-devices that facilitate
both front-end configuration and monitoring of environmental variables (voltages, temperatures,
etc.) on and around the detector. The SCA contains an ADC, DACs, general purpose 10, and
controllers for 12C, SPI and JTAG. An SCA is connected to a GBTX via any 2-bit E-link in 40 MHz DDR
mode (80Mb/s) with HDLC encoding. Up to 41 SCAs can be potentially connected to a single GBTX
with the corresponding link on FELIX configured accordingly.

From/To FELIX
I E-links on GBT-frame
H IC EC EC FEC
GBTx Gorirol Fath Data Path - .
Abits Zhits Zbits B0bits 3Zbits

up to 40

40MHz DDR
80 Mbps

SCA

SCA

Figure D.1 GBT frame paths and E-links.

D.2 Typical test setup

A typical test setup consists of a board with a GBTX that is connected to FELIX via an optical fibre
and to an SCA via one of the GBTX’s E-links.

The Versatile Link Demo Board (VLDB) (https://espace.cern.ch/GBT-Project/VLDB/default.aspx)
contains both a GBTX and an SCA. It can be directly connected to a FELIX card. (The VLDB demo
board can be procured from the GBT group). A schematic of such a setup is shown in Figure D.2 .

154

https://espace.cern.ch/GBT-Project/VLDB/default.aspx

FELIX host
n

'Y

optical fibre

PCle

—p VIRTEX -7

Figure D.2 Evaluation setup with a GBT-SCA on a VLDB. SCA and GBTX are interconnected on the VLDB
externally via a pair of mini-HDMI connectors (J32 (PRIMARY) and J33 (SCA PORT), in that case using the
GBT EC E-link).

To simplify the evaluation of the setup, the VLDB possesses two LEDs connected to two general-
purpose digital outputs of the SCA. This can be used to quickly validate visually the communication
path and functionality all the way from the FELIX host to the SCA itself. In order to do that, the 'fec’
tool, of the ftools family as mentioned in Section 6, can be used.

The following command instructs the SCA connected to the VLDB with the GBT link
<gbt_link_number> EC link, to blink one of its LEDs 50 times at a rate of 5Hz (-t 100: 100ms on,
100ms off; last character is an 'o' for 'output’; -x selects the digital output: on the VLDB there’s an
LED on 18 and one on 21):

fec -G <gbt_link_number> -r 50 -t 100 -x 18 o

D.3 Procedure to set up an E-link to a GBT-SCA

A configuration procedure is needed both for FELIX and the GBTX itself. The configuration is mostly
a description of the setup at hand and the mapping of the e-links that are connected. There are also
some setup specific parameters to be configured.

In the case the SCA is connected to the dedicated EC E-link, one should check that this E-link is
enabled using the elinkconfig GUI. That specific E-link is pre-configured with the appropriate HDLC
SCA encoding and corresponding bit endianness and can be used directly for an SCA. Figure D.3
shows an elinkconfig screenshot with the enabled EC channel in both the to-host and from-host
direction, indicated by the checked tick boxes with yellow background labeled 'EC’; the
hexadecimal number in brackets is the FELIX E-link ID associated with this E-link. Note that we
happen to have selected GBT link #2, which is also reflected in the hexadecimal numbers next to the
various E-link 'enable’ tickboxes.

In the case that one wants to use an E-link from one of the GBT E-groups instead of or in addition to
the EC E-link, one has to configure FELIX accordingly via elinkconfig. The SCA uses HDLC encoding
instead of the typical 8b/10b which is the default for the data E-links, so this needs to be configured
for the E-link. Moreover, the bit orientation is different from the normal' data E-links. By selecting
the HDLC format in the drop-down menu, elinkconfig takes care both of the orientation and the
encoding, indicating that an SCA is connected to that specific GBT group and path. As an example,
Figure D.3 shows that the 8th 2-bit E-link of E-group 0 of GBT link 2 has been enabled in the FELIX
configuration in both the to-host and from-host direction. The FELIX E-link ID is shown here to have
a value of 0x087. Using ftools tool felink one can confirm this is indeed the requested E-link:

155

> felink -e 87
E-link 087 = GBT #2 group #0@ path #7, bit#14 width=2

E% FELIX E-link Configurator @ agogna - [m] >
FLX-device: 01(712, GBT) - Read Cfg || TH_FanOut...| FH_FanOut...| | Timeout... Clock... Stream IDs Advanced
File: Open... Save...
Link |2 Z| = GBT FULLmode | Replicate.. Repl 2 All Use link 'EMU' to configure Emulator E-links Generate/Uplead...
| | TTC-to-Host (63b) Truncation (per link): ¥ HDLC
Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4 Egroup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
2-bit ~ || 2-bit ~ | 2-bit ~ | 2-bit <~ | 2-bit ~ v EC (bf) 2-bit =~ | 2-bit ~ | 2-bit ~ | 2-bit ~ | 2-bit ~ v EC (bf)
V| 087 osf 097 o9f 0a7 HDLC b V| 087 osf 097 oof 0a7 HDLC b
HDLC ~ - - - - b HDLC ~ - - - - b
Epath 7 Epath 7 Epath 7 Epath 7 Epath 7 (=) Epath 7 Epath 7 Epath 7 Epath 7 Epath 7 IC (be)
086 08e 096 09%e Da6 086 08e 096 0%e 0ab
Epath & Epath & Epath & Epath & Epath & Epath & Epath & Epath & Epath & Epath &
085 oad 095 09d 0a5 085 08d 095 09d 0a5
Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5 Epath 5
084 08c 094 09¢c Oa4d 084 08c 094 09¢c 0ad
Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4 Epath 4
083 08b 093 09b 0a3 083 08b 093 09b 0a3
Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3 Epath 3
082 08a 092 09a 0a2 Egroup 0 082 08a 092 09a 0a2 Egroup 0
. Egroup 1 Egroup 1
Epath 2 Epath 2 Epath 2 Epath 2 Epath 2 Egroup 2 Epath 2 Epath 2 Epath 2 Epath 2 Epath 2 Egroup 2
Egroup 3 Egroup 3
081 089 091 099 Oal 081 089 091 099 Dal
Egroup 4 Egroup 4
Epath 1 Epath 1 Epath 1 Epath 1 Epath 1 Replicate.. Epath 1 Epath 1 Epath 1 Epath 1 Epath 1 Replicate..
080 088 090 098 0a0 EepliZill 080 088 090 098 0a0 Bepjall
= = = = = Disable = = = = = Disable
Epath 0 Epath 0 Epath 0 Epath 0 Epath 0 Enable Epath 0 Epath 0 Epath 0 Epath 0 Epath 0 Enable
ToHost Link 2 FromHost Link 2
FEL| X v4.1.0 9un-2020 (tag: test-00-00-02-2-goaefcba-dirty) Quit

Figure D.3 Enabling E-links connected to GBT-SCAs.

D.4 Low level operations with the fec tool

The fec tool, is a dedicated tool from the ftools suite of tools to demo the handling of a number of
I/0 channels available on the SCA. Please check the full list of possible operations in Section 6.

D.5 A Software Suite for the Radiation Tolerant GBT-
SCA - The Production system

The on-detector DCS system that handles the slow control traffic and the configuration of the front-
end electronics, based on the GBT-SCA. The global scheme is presented in the following figure.

156

Hardware Interface Middleware Solution Clients

(UaExpert, etc.)

SCA Software Library

SCADA Clients
(WinCC OA, etc.)

optical Ua
! L links () .
7} « Configuration
E-links netiO (C/ /e Vi) lient
e Bl =0 /e
83
5
SCA OPC UA é‘n_— O | Peripheral Servers
server E
SCA E-link Evaluation PCB gﬂ Diagnostic Clients

A
_/

fwSca

SCA Simulator

function
calls

SCA Software Demonstrators

Figure D.4 Global picture of the software suite. The SCA Software package, in light blue, comprises the SCA
Software API to communicate with the SCA via different back-ends, the SCA Simulator to emulate SCA
traffic for testing and development, and the Demonstrator tools which are used for standalone operations.
The SCA OPC UA server and its ecosystem, in orange, is the middleware of choice to exchange data with the
front-ends. UaoClientForScaOpcUal is a library that clients use to communicate with the SCA server. Finally,
the fwSca module automatizes the integration of the server data into SCADA systems.

The slow control and configuration traffic, unlike physics data, has different requirements in terms
of throughput, latency, availability and reliability. SCA DCS is the software that handles the SCA
traffic arriving on the FELIX card. Towards the FELIX clients it is based on the middleware Open
Platform Communications Unified Architecture (OPC UA, of the OPC foundation,
(https://opcfoundation.org) which is an industry standard for secure and reliable exchange of data
in industrial automation and other controls-related areas.

The server/client architecture that the platform uses, allows for different purpose clients to be
served by a single server per FELIX host. The data flow to/from the ATLAS control room, not only
serves the control and monitoring data of the detectors' conditions but also implements the
configuration path of the on-detectors electronics and their initialization for data taking or
calibration. In addition, system experts can monitor the status of the employed technology and get
statistics and other information in order to diagnose the various system layers.

All those requirements potentially imply many different OPC UA clients that would like to receive
SCA data from the setup at the same time. The chosen OPC UA architecture ensures the reliable and
seamless data delivery and the compatible integration into the current DCS systems. This means
that OPC UA clients in both DCS and a detector configuration server can communicate with the
same SCA and the OPC UA server arbitrates their access.

D.5.1 OpcUaSca server

The provided OPC UA server implementation for the SCA is based on the ScaSoftware (explained
below) intending to profit from all features of the ScaSoftware library and providing a high-level
and user-friendly OPC UA address space to OPC UA clients.

157

https://opcfoundation.org

OPC UA'SCA

The OpcUaSca server has been designed and implemented using the quasar framework (see
https://github.com/quasar-team/quasar). Its design is presented in the following figure.

Meta ScaSupervisor 12cMaster
DigitallOSystem versionString : UaString numberOffline : UInt16 diagnostics . Uatring
diagnostics : UaString masterld : Byte
1,nc s Q 1,nc busSpeed : UIntl6
DigitallO @ sclPadCmosOutput : Boolean
0..32 3
value : Boolean 0..1 0..* 0.16 T 1..1024
isinput : Boolean -
ar Byte SCA 12cSlave
numberOffline : UInt16 value : UaByteString
online : Boolean masterld : Ulntlé
0..1 id : UInt32 numberOfBytes : Byte
numberRequests : UInt64 addressingMode : Byte
numberReplies : UInt64
1.8 I lastReplySecondsAgo : Ulnt64
idConstraint : UaString _
SpiSIave supervised : Boolean 0.* DacSystem Q
recoveryActionScaStayedPowered : UaString | 1 0..32
write : UaByteString recoveryActionScaWasRepowered : UaString
busSpeed - UInt32 managementFromAddressSpace : UaString
transmissionSize : Byte reset() - void DacOutput
slaveld : Byte ing() - Boolean
sclkidleHigh : Boolean ping = voltage : Double
sampleAtFallingRxEdge : Boolean 1/ 0..1 id : UaString
sampleAtFallingTxEdge : Boolean
IsbToMsb : Boolean AnaloginputSystem
autoSsMode : Boolean
generalRefreshRate : Double 0.1
diagnostics : UaString
ya XilinxFpga
Analoglnput idcodeNumeric : UInt32
idcodeString : UaString
value : Float jtagClockMhz : UIntl6
id : Byte
program(UaByteString) : void
getConsecutiveSamples : Float []

Figure D.6 The quasar design diagram of the OPC UA server for the SCA.

As of May 2020, the server supports the following functionality:

158

Communication with any number of SCAs, through NetIO or any other HDLC backend. Each SCA
is identified in its address-space by a name, and its unique 24-bit "SCA identifier" which is
written by the chip manufacturer in the SCA silicon. The identifier is read using the ScaSoftware
library when a connection to given SCA is opened.

Up to 32 ADC channels per SCA which are polled with the configured conversion frequency.
Note that channel 32 has no external connection; it is connected to the on-chip temperature
sensor that monitors the SCA temperature.

Up to 32 General Purpose I/0 pins per SCA. Each pin can be configured as an input or output
through the server config file.

Up to 4 DACs per SCA; the DACs take the desired voltage as a float (0..1V).

Up to 8 SPI slaves per SCA. The SPI configuration (like speed, phase, mode . . .) can be
configured in the server config file.

Up to 16 independent configurable 12C master controllers
Up to 1024 12C slaves per 12C master controller
A single Xilinx FPGA over JTAG interface

https://github.com/quasar-team/quasar

D.5.2 ScaSoftware Package

In the SCA Software package core there is a library that is structured in modules that implement the
required functionality in various layers. The library was designed to be flexible and easily
adaptable to the diverse systems intended to use it by its polymorphic HDLC back-end. A block
diagram of the software architecture of this library is shown in Figure D.7

Moreover, the SCA Software package contains the Demonstrators which are tools that directly use
the library and are used for testing and for low level diagnostics. Finally, as part of the package, an
SCA Simulator was developed that is able to generate SCA traffic, simulating realistic SCA
behaviour, in order to allow for development and testing without real hardware.

SCA Software

ADC || SPI || 12C | GPIO || JTAG || DAC

Synchronous Service

HDLC Backend

SCA

Simulator netlQ UsB

Figure D.7 SCA Software Library stack.

» The library is a modular piece of software supporting SCA chips no matter how it is physically
connected to the host system. Therefore the core part of the library operates on protocol data
units of the SCA chip, which normally would be encapsulated in the HDLC protocol. There are a
number of predefined "HDLC backends" which are services to send such encapsulated SCA
requests and receive replies.

» The library scales from the simplest use cases up to scenarios of thousands of SCAs.

* The library is able to profit from concurrency features of the host system, including multi-core
and multi-threaded operation.

* The library is written in a chosen version of the standard C++ dialect.

* The library is designed with reliability and robustness as a key design choice because it would
serve critical, 24/7 communication.

D.6 SCA References

1. P. Moschovakos, P. P. Nikiel, et al, "A Software Suite for the Radiation Tolerant Giga-bit
Transceiver - Slow Control Adapter”, presented at the 17th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
WEPHA102.

2. OpcUaSca repository, https://gitlab.cern.ch/atlas-dcs-opcua-servers/ScaOpcUa
3. ScaSoftware repository, https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware

4. Uao Client for OpcUaSca, https://gitlab.cern.ch/atlas-dcs-opcua-servers/UaoClientForOpcUaSca

159

https://gitlab.cern.ch/atlas-dcs-opcua-servers/ScaOpcUa
https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware
https://gitlab.cern.ch/atlas-dcs-opcua-servers/UaoClientForOpcUaSca

0 :'table: 14

160

Appendix E: Guide to Using FELIX with the
SCA eXtension

The Slow Control Adapter eXtension (SCAX) is an FPGA module that emulates the GBT-SCA’s
communication with the back-end (i.e. FELIX and the OPC UA server) in order to provide access to
registers in the FPGA. The OPC-UA server uses the protocol for the SCA’s 12C interface. SCAX’s
connection to the registers is, however, parallel and not I12C.

E.1 Introduction

The SCA ASIC is typically installed on front-end boards in order to configure and monitor other
front-end devices (usually other ASICs) on the board. Being radiation-tolerant, it can be deployed on
front-end boards that are subject to high radiation doses. However, there may be several parts of
the DAQ system that are FPGA-based, and are either situated in parts of the detector which are not
exposed to a disruptive particle flux, or are even outside the experimental cavern, in the counting
room (or USA15).

The New Small Wheel (NSW) DAQ system for instance, uses the SCA to configure and monitor six
other front-end ASICs. The NSW electronics includes also FPGAs deployed on the rim of the wheel
(i.e. Pad Trigger) and in USA15 (NSW Trigger Processor). The board of the latter FPGA-based system,
does not feature an SCA, but like the ASICs, its parameters must be tuned and its status monitored.
Even though the SCA is not present in the Trigger Processor, it was desirable to include it in a
unified configuration and status monitoring scheme.

The solution came in the form of the SCAX, which makes use of the FPGA’s direct interface with
FELIX (via optical fiber and by deploying the GBT-FPGA [17] in its logic) , to communicate with the
OPC UA server (see Appendix D). The SCAX’s logic, has been designed in such as a way as to be
completely transparent to the OPC server, which was initially designed to interface only with the
SCA. By emulating the command-response protocol dictated by the SCA’s specifications, the SCAX
can establish a connection with a server as an SCA FELIX, and use the server’s features to access the
registers of the FPGA in which it is implemented; this is being achieved by mimicing the SCA’s 12C
device and to write into and read from the FPGA fabric registers. Full access to registers in the
FPGA, using the already existing and well-established OPC software ecosystem is thus provided. The
general scheme can be examined in Figure E.1 . SCAX has been deployed successfully in the NSW
Trigger Processor FPGA, but it can be used by any FPGA device that features a direct connection
with FELIX.

FPGA

GBT-FPGA Optical Link Network

Transceiver
4.8Gbps

Y
=
SCA le Front-End

FPGA Board Device

» FELIX

A

Optical Link +
Serial E-link
(via GBTx)

Figure E.1 Connectivity of the SCA and the SCAX with the OPC Server.

161

E.2 Establishing a Connection between the SCAX and
FELIX

This Appendix will focus on the procedure it must be followed by the user of the SCAX to connect
the instance of the logic with FELIX. The reader may refer to [19] for a detailed user guide on how
to deploy the SCAX in an FPGA, and to [20] for a detailed write-up of the module’s architecture.

If a proper configuration is found, then going through all the steps mentioned below will not be
necessary, but it is strongly recommended to follow them after the first attempt to establish a
connection between all nodes.

Note also that it is not needed to connect the SCAX with any of the user logic registers when going
through the connectivity validation procedure.

E.2.1 General Steps

In principle, the user must follow the procedure below to establish a system that allows access to
the registers of their FPGA logic using the SCAX < — FELIX < - OPC Server arrangement:
1. Deploy the SCAX in their FPGA netlist

2. Connect the SCAX either with a GBT-FPGA instantiation, or with a GBTX device, either of which
must feature a direct optical bidirectional connection with FELIX

. Configure FELIX accordingly

3

4. Validate the SCAX’s RX path
5. Validate the SCAX’s TX path
6

. Connect the OPC UA server with the SCAX instance in question

In the following subsections, each step will be addressed in more detail.

E.2.1.1 Deploying the SCAX in a pre-existing FPGA design

The procedure that must be followed by the user/designer to deploy the SCAX into their firmware is
covered in greater detail at the associated user guide [19]. However, some recommendations will be
mentioned in this subsection.

First of all, the clocking scheme must be chosen carefully, in order to avoid data corruption on both
directions of the communication. For a GBT-FPGA-driven implementation, the SCAX’s E-link clocks
(40, 80, 160 and 320 MHz) must be related with the transceiver’s reference clock. For a GBTx-driven
use-case, the SCAX’s E-link clocks must be derived from the E-link clock, as delivered by the GBTX to
the user FPGA.

Also, for the first implementation iterations where the user is attempting to establish a connection
with FELIX, the following pins must be tied to a Xilinx Virtual Input/Output (VIO) IP core: rx_swap,
tx_swap, dbg_fifo_rd, and ena_flx_test.

Finally, it is strongly recommended to set the SCAX in 8b10b, 80 Mbps, and in debug mode via the
associated generics.

162

E.2.1.2 Connecting the SCAX to a GBT-FPGA or a GBTx
There are two use-cases that must be studied; they are depicted in Figure E.2 .

Front-End Back-End

1
1
1
FPGA .
1
SCAX |€»| GBTx |€ O 1 3! FELIX €A
Ofiirl‘l;al: Network [S€rver
A vV 1
User 1
Logic :
FPGA

SCAX
A v

User
Logic

(o N OPC
Oll_)lﬁckal - P Network (Se€rver
ni

Figure E.2 Two possible ways to connect the SCAX with the OPC Server.

vt
GBT-FPGA
A

In the case of connecting the SCAX with the FELIX/OPC Server via a GBT-FPGA, the user should
connect the parallel ports of the SCAX (e.g. rx/ tx_elink2bit) with the 84-bit TX/RX bus of the GBT-
FPGA instance. Depending on the bits of the bus that are chosen, the SCAX will belong to a different
E-link. If the recommended SCAX interfacing configuration is chosen (i.e. 8b10b 80 Mbps), then the
user should use the 2-bit TX/RX ports of the SCAX (2-bit is for 80 Mbps, 4-bit is for 160 Mbps etc.),
and connect it to Egroup0 or Egroupl of FELIX. Egroup0 EPATHO corresponds to bits [1:0] of the
GBT-FPGA’s TX/RX bus. Egroup0 EPATH1 corresponds to bits [2:3] of the bus. Egroupl EPATHO
corresponds to bits [16:17] of the bus, etc. If the same part of the bus is chosen for both directions,
then SCAX will reside on the same E-link for both the To-Host and the From-Host paths, which eases
the procedure.

In the case of connecting the SCAX with the FELIX/OPC Server via a GBTX, the user should connect
the serial ports of the SCAX (i.e. rx/ tx_elink) with the desired GBTx pins. Testing so far has shown
that by choosing a low data rate (i.e. 8b10b 80 Mbps), the communication of the SCAX with FELIX
via the GBTx is easier, as it is probably not needed to train the GBTx on the datastream coming from
the SCAX (see the GBTx manual [3] for more details on how to perform training on the GBTX ports).
If a faster data rate has to be chosen due to system restrictions, it is recommended to perform
training on the GBTx bank that the SCAX’s TX path corresponds to, in order to avoid data
corruption on that direction. Finally, the user must deduce the E-link ID to which the SCAX
corresponds, by going through the PCB’s schematic and taking note to which GBTx package pins the
SCAX’s serial I/Os are connected.

Note that different Egroups of FELIX support specific protocols and data rates for semi-static builds.

E.2.1.3 Configuring FELIX Prior to Connectivity Testing

If the To-Host (SCAX-TX) and From-Host (SCAX-RX) E-links to which the SCAX corresponds are
known, then these must be activated on the FELIX side via the elinkconfig tool, as per the data rate
and protocol to which the SCAX is configured via its generics. felix-star must be running throughout

163

the connectivity testing.

E.2.1.4 E.2.1.4 Validating the SCAX’s RX Path

In order to validate the SCAX’s RX path (or From-Host direction, in FELIX jargon), then after
configuring the FELIX E-links accordingly, the embedded SCAX’s ILA must be used to probe the RX
path. The ILA is activated if the SCAX is deployed in debug mode, as recommended for the first
implementation attempt.

There are two ports that must be examined: these are the din_dbg and drdy_dbg. The 10-bit din_dbg
bus yields the decoded data originating from the FELIX E-link. In the case of 8b10b encoding at
80Mbps, pairs of standard commas, K28.5, must appear periodically on the bus. This is the Oxbc
byte, accompanied by "11" in the first two bits of the bus. Hence, if the communication is sound, the
0x3bc word will appear every five cycles, and the drdy_dbg will go high for the cycle the word
appears. If any of these is not true, then the user should check if the optical link is aligned via the §
fix-info GBT command in FELIX, then check if the E-link configuration on the FELIX side is correct.
If these appear to be OK, then the user should either attempt to probe the aforementioned ILA ports
after attempting a different rx_swap state, or after attemtping a different fereverse configuration on
the FELIX side.

E.2.1.5 Validating the SCAX’s TX Path

In order to validate the SCAX’s TX path (or To-Host direction, in FELIX jargon), then after
configuring the FELIX E-links accordingly, the VIO connected to the SCAX’s critical ports must be
used to send a test packet to FELIX. First of all, the user should have felix-star running in FELIX, and
felix-stest-swrod subscribed to the To-Host E-link of the SCAX, in order to ensure the test packet is
indeed being received by FELIX. Then, the user should toggle the VIO’s port ena_fIx_test from low to
high and then back to low (note that it must be kept low when not used). By doing this, the SCAX
sends the following message to FELIX: Oxff 0x63 0Oxe5 Ox5e. If the message is reported by felix-stest-
swrod, then the communication on that direction has been established. If not, then the user should
check if the optical link is aligned via the § flx-info GBT command in FELIX, then check if the E-link
configuration on the FELIX side is correct. If these appear to be OK, then the user should attempt to
send the message again after attempting a different rx_swap state, or after attempting a different
fereverse configuration on the FELIX side. If a GBTX is used in the communication chain, then
training the GBTx should also be considered.

E.2.1.6 Connecting the OPC Server

If both TX/RX paths are validated, then the user should attempt to connect the OPC server with the
SCAX. Note that it is advised to check the system’s state by trying to connect the server with already
existing SCA’s, prior to any SCAX connection attempts. If the server and FELIX seem to be working
as they should, then the SCAX instance can be added to the OPC’s configuration .xml. Choosing the
correct E-link as a parameter in the .xml is crucial.

If the OPC server can connect to the SCAX (There is no reason not to, if Steps 4 and 5 have been
validated by the user.), then the user may implement the SCAX again, in non-debug mode and by
removing the VIO (note that the rx_swap and tx_swap values that work must be retained). If the
SCAX still connects, as it should, then the user may proceed with interfacing the SCAX with the rest
of their logic, as per the SCAX user guide. Note that if a GBTx is used, it is recommended that the

164

user always train the GBTx after configuring their FPGA.

If the server fails to connect, then Steps 4 and 5 should be revisited. Note that testing so far has
shown that if the OPC server fails to connect, felix-star must be restarted prior to another
connection attempt.

165

0 :'table: 15

166

Appendix F: External emulators

Dedicated firmwares allow to turn a FELIX card into a data generator for testing and performance
assessment purposes. A FELIX in such configuration is called external emulator, where the
adjective external is meant to avoid confusion with the internal emulator present in the GBT and
FULL mode firmware flavours. Two kinds of external emulators exist: FELIG for the GBT mode, and
FMEmu for FULL mode. Instructions on how to operate FELIG and FMEmu are listed in the
following.

F.1 FELIG

The FELIG firmware is available for the FLX-712 card (previously only the HTG-710). Full details are
available in the dedicated user manual on CDS:

https://cds.cern.ch/record/2752360/

F.2 FMEmu

The FMEmu firmware is available for the FLX-712 and FLX-711 card models. It can be loaded on a
48-channel card but it will use 24 channels only. The FMEmu can be connected to a FELIX via a
patch panel or using MTP-24 loopback fibres (in the latter case FELIX and FMEmu have to be hosted
on FLX cards with the same number of channels). The FMemu can be set to receive the clock from
the TTC system as a long as the TTC ST fibre is connected to it. The FMEmu can send data
continuously or in triggered mode (upon reception of a L1A from FELIX). The FMEmu supports the
XOFF traffic control system.

F.2.1 Quick start guide

Instructions on how to setup a FMEmu+FELIX system are listed in the following. Commands have to
be entered in both the FELIX and FMEmu hosts. To distinguish between the two hosts the
commands are preceded by the labels [FELIX] and [FMEmu]. Comments that are not commands are
written within parenthesis.

Felix configuration: On elinkconfig enable all the desired ToHost links. In addition for each GBT
link, enable the following FromHost e-links:

» Egroup 0, Epath 0 (2-bit wide, 000), 8b10b encoding (for the XOFF)
* Egroup 1, Epath 1 (8-bit wide, 009), TTC-3 encoding (8-bit wide, for the TTC)

Alignment procedure:

[FELIX] # (configure clock selection and links with elinkconfig)

[FMEmu] flx-config MMCM_MAIN_LCLK_SEL @ (@ is TTC clock | 1 for local clock)
[FELIX] flx-init

[FMEmu] flx-init

[FELIX] flx-info link (check for alignment)

[FELIX] flx-info freq (check if all rxoutclk frequencies match (+/- 1 Hz)

167

https://cds.cern.ch/record/2752360/

[FMEmu] flx-info link (check for alignment)

Once the links are aligned the FMEmu can be started in either continuous mode or triggered mode.
In the latter case the L1A received by FELIX from a TTC system are forwarded to the FMEmu.

Continuous mode:

[FMEmu] # if you want to enable XOFF, else skip

[FMEmu] flx-config FMEMU_CONTROL_XONXOFF 1

[FMEmu] # Use the ffmemu utility. For example to generate 128-byte messages upon the
reception of LOAs

[FMEmu] ffmemu -c -T -w 32

F.2.2 FMEmu data format and payload

Each FMEmu message consists of a 32-bit field containing the extended L1ID, followed by an
incremental sequence of bytes. The payload size can be set to constant using

flx-config FMEMU_RANDOM_CONTROL_SELECT_RANDOM @
flx-config FMEMU_COUNTERS_WORD_CNT <value>

Otherwise, the payload size is randomly drawn from a distribution. The payload size distribution
can be generated with a script such as fragsizegen and loaded onto the FMEmu with

femuran <file.coe>

The FMEmu is capable of generating chunks of size up to 4-5 kB at 100 kHz.

168

https://gitlab.cern.ch/cgottard/fragsizegen

0 :'table: 16

169

Appendix G: XOFF Connection

G.1 Introduction

In the FULLMODE firmware of FELIX, backpressure can be applied to the Frontend links by means
of the XOFF mechanism. The XOFF mechanism was designed to prevent data loss in case of a short
burst of high bandwidth, especially if the total (sum) bandwidth of the links exceeds the available
PCIe bandwidth.

In the case of XOFF, it is assumed that the Frontend electronics host enough buffer memory in
order to store the data while XOFF is active.

G.2 Operation

Every FULLMODE channel (referenced as FM0.FM23) in FELIX has a 16 kB channel FIFO. A
(High/Low) watermark level can be set for each fifo in steps of 1 kB, the default value of both high
and low are set to 11kB. If the channel FIFO is filled beyond the high watermark, XOFF will be
issued for the corresponding E-Link. If the fifo is emptied beyond the low watermark, XON will be
issued.

To enable the XOFF mechanism which is disabled by default, two actions must be taken:

* The link XOFF setting must be enabled for the given link. This can be done through fexoff.

¢ The FromHost / Downlink GBT E-Link must be Enabled as 2-bit / 8b10b to be able to transmit
XON and XOFF K-Characters

o The E-Links that are capable of transmitting XOFF for a related FULL mode link (FM0..FM23)
are listed in XOFF E-Links

o Elinks can be configured as 2-bit/8b10b using elinkconfig or feconf

For testing purposes, a soft XON or XOFF can be transmitted using the fexofftx tool. This tool can
also be used to manually set the frontend in XON state while it is in XOFF.

G.3 XOFF capable E-Links

Table G.7 XOFF E-Links: E-Links on the GBT Downlink in FULL Mode firmware, capable of transmitting
XOFF

GBT Egoup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
Downlink
0 FMO..7 FMS..15 FM16.23" N.A. N.A.
FM1 N.A. N.A. N.A. N.A.
2 FM2 N.A. N.A. N.A. N.A.
3 FM3 N.A. N.A. N.A. N.A.
4 FM4 N.A. N.A. N.A. N.A.

170

GBT Egoup 0 Egroup 1 Egroup 2 Egroup 3 Egroup 4
Downlink

5 FM5 N.A. N.A. N.A. N.A.
6 FM6 N.A. N.A. N.A. N.A.
7 FM7 N.A. N.A. N.A. N.A.
8 FMS8 N.A. N.A. N.A. N.A.
9 FM9 N.A. N.A. N.A. N.A.
10 FM10 N.A. N.A. N.A. N.A.
11 FM11 N.A. N.A. N.A. N.A.
12 FM12..19 FM20..23 N.A. N.A. N.A.
13 FM13 N.A. N.A. N.A. N.A.
14 FM14 N.A. N.A. N.A. N.A.
15 FM15 N.A. N.A. N.A. N.A.
16 FM16 N.A. N.A. N.A. N.A.
17 FM17 N.A. N.A. N.A. N.A.
18 FM18 N.A. N.A. N.A. N.A.
19 FM19 N.A. N.A. N.A. N.A.
20 FM20 N.A. N.A. N.A. N.A.
21 FM21 N.A. N.A. N.A. N.A.
22 FM22 N.A. N.A. N.A. N.A.
23 FM23 N.A. N.A. N.A. N.A.

G.4 Retransmission

Since Version 4.11 of the firmware the XON and XOFF K-Characters will not only be sent on a
change of the XOFF state of the FULL mode channel FIFO, but the transmission of the state will also
be repeated with an interval of 4 us (160 Bunch Crossing cycles). Additionally, a new TTC option;
TTC-8 has been added in version 4.11 which continuously transmits the XOFF state on bit 1, and L1A
on bit 0 of a 2-bit (80 Mb/s) E-Link.

G.5 Data format

The XOFF and XON commands are sent over a regular 8b10b (2-bit/80 Mb/s) E-Link. This E-Link can
still be used to transmit 8b10b encoded messages to the FrontEnd. In case of an XOFF or XON event,
the command will be sent as a special K-Character, shortly interrupting the data transmission
towards the frontend.

The 8b10b encoding for the E-Links is encoded MSB first, that means the Most significant bit is
serialized first.

171

Table G.8 Data format of XOFF capable E-Link
Command K-Char 10b+ 10b- 8b Remark

XOFF K28.2 30A O0F5 5C Set Front-
End in XOFF
state and
start internal
buffering

XON K28.3 30C 0F3 7C Resume
normal
operation

IDLE K28.5 305 OFA BC E-Link is
idle, also
used for E-
Link
alignment

SOC K28.1 306 0F9 3C Start-Of-
Chunk

EOC K28.6 309 0F6 DC End-Of-
Chunk

Data Dxx.X Any decimal
character
(non-K) will
be treated as
regular
payload, but
has to be
incapsulated
within SOC
and EOC K-
chars

G.6 XOFTF Statistics

The FELIX firmware includes a mechanism to measure some statistics about XOFF. This mechanism
can measure:

* The peak duration of XOFF
» The average duration of XOFF

e The number of XOFF events that occurred

To get the peak value of XOFF for XOFF channel 5 (05 can be replaced by any value between 00 and
11 for each PCle endpoint) the following command returns the duration as a 64-bit hexadecimal
number, in 25ns (Bunch-crossing clock) bins.

172

flx-config XOFF_PEAK_DURATION@5

To obtain the number of XOFF events for a certain channel, the following command can be issued.

flx-config XOFF_COUNT@5

To obtain the average duration, the following number must be divided by XOFF_COUNTnn:

flx-config XOFF_TOTAL_DURATION®@S

The tool fexofftx can also display the statistics shown above:

$ fexoff

FIFO threshold Low=11 High=11 (4 MSBs, i.e. in 1/16ths of the FIFO size)
XOFF: disabled THRESH-X: L=0 H=0 (latched=0)

Link @
total=0
Link 1
total=0
Link 2
total=0
Link 3
total=0
Link 4
total=0
Link 5
total=0
Link 6
total=0
Link 7
total=0
Link 8
total=0
Link 9
total=0
Link 10
total=0
Link 11
total=0

peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0
XOFF: disabled
peak=0

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

THRESH-X:

L=0

L=0

L=0

L=0

L=0

L=0

L=0

L=0

L=0

L=0

L=0

H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)
H=0 (latched=0)

H=0 (latched=0)

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

STATS:

count=0

count=0

count=0

count=0

count=0

count=0

count=0

count=0

count=0

count=0

count=0

count=0

duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]
duration[25ns]

duration[25ns]

[1] Transmission of XOFF from FULL mode links 12..19 through GBT link 0 has been added since firmware version 4.11

173

Advanced interface and switch
configuration

Specific configurations of the host networking as well as the network switches have to be applied
and both have to co-operate in order to work properly. We make use of DSCP (Differentiated
Services Code Point), an IPv4 QoS mechanism, and Explicit Congestion Notification (ECN), an
extension to IP that allows end-to-end notification of network congestion, to minimize the impact of
network issues inherent to Ethernet.

For the configuration of the hosts:
* Enable ECN for all priorities:
for i in ‘seq 0 7°; do
VAL="cat /sys/class/net/$IFACE/ecn/roce_np/enable/$i’
_If ["X$VAL“ !: IIX1II]; then

echo 1 > /sys/class/net/$IFACE/ecn/roce_np/enable/$i
fi

VAL="cat /sys/class/net/$IFACE/ecn/roce_rp/enable/$i’

if ["x$VAL" != "x1" 1; then
echo 1 > /sys/class/net/$IFACE/ecn/roce_rp/enable/$i
fi
done

These parameters are not persistent and need to be set after each boot. The openibd service
(Mellanox drivers) provides a post-start hook that can be used for this. Create this file with
permissions as follows and add the previous commands in it (for each Mellanox cards):

$ 1s -1 /etc/infiniband/post-start-hook.sh
-rwxr-xr-x 1 root root 406 Dec 8 13:47 /etc/infiniband/post-start-hook.sh

The recommended network switches are Juniper QFX 5120 or 5200. Please see this Juniper
document for minimum software release. However, based on our tests, we recommend Junos OS
20.2R1 for these two platforms. Please refer to the device documentation for generic configuration
instructions.

The recommended switch configuration consists of:

* creating a dedicated drop profile:
We aim for "continous" congestion notifications as this seemed to work better with shared-
buffer configuration.

drop-profiles {
dp1 {
interpolate {

174

https://apps.juniper.net/feature-explorer/feature-info.html?fKey=8593&fn=Remote%20Direct%20Memory%20Access%20(RDMA)%20over%20converged%20Ethernet%20version%202
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=8593&fn=Remote%20Direct%20Memory%20Access%20(RDMA)%20over%20converged%20Ethernet%20version%202
https://www.juniper.net/documentation/product/en_US/junos-os

fill-level [1 90];
drop-probability [@ 5];

* partitioning the shared ingress buffer as follows:
40% is assigned to lossless (RoCE) traffic
55% provides extra space for lossless traffic when congestion are signaled
5% is left to other, lossy traffic

shared-buffer {
ingress {
buffer-partition lossless {
percent 40;

}

buffer-partition lossy {
percent 5;

}

buffer-partition lossless-headroom {
percent 55;
}

* defining a custom traffic class:
lossless traffic class called "roce" assigned to queue 2

forwarding-classes {
class roce queue-num 2 no-loss;

}

* configuring congestion signalling:
DSCP is configured for Mellanox NICs' default code-points, 110000.
DSCP and PFC are mutually exclusive (per port) on this platform so PFC is left inactive but
visible for the sake of making it clear where to enable it if needed.

congestion-notification-profile {
cnpl {
input {

inactive: jeee-802.1 {

code-point 110 {
pfc;

}

}

dscp {
code-point 110000 {

175

pfc;

* binding everything together:
Create a scheduler assigning the drop profile to all traffic
Enable ECN
Assign this scheduler to roce traffic class
Apply all of this to all interfaces

schedulers {
s1 {
drop-profile-map loss-priority any protocol any drop-profile dp1;
explicit-congestion-notification;

}
}
scheduler-maps {
sml {
forwarding-class roce scheduler s1;
}
}
interfaces {
et-0/0/* {
congestion-notification-profile cnpl;
scheduler-map sm1;
unit 0 {
forwarding-class roce;
}
}
}

176

References

= [4] GBT Module for the FELIX Project, url: https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/
FELIX_GBT_MANUAL.pdf.

= [5] IpGBT user manual, url: https://cds.cern.ch/record/2809058/files/IlpGBT_manual.pdf.

= [6] ATLAS Felix Group, Specifications for the FELIX FULL mode link, url: https://atlas-project-
felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf.

= [7] Xilinx, Xilinx VC709 Development Kit, url: http://www.xilinx.com/products/boards-and-kits/
dk-v7-vc709-g.html.

= [8] ATLAS FELIX Group, BNL-711 v2 Manual, url: https://atlas-project-felix.web.cern.ch/atlas-
project-felix/user/docs/BNL-711_V2P0_manual.pdf.

= [9] Supermicro, Supermicro X10SRA-F Motherboard Model Specification, 2016, url:
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm.

= [10] CERN TTC FMC project, url: http://www.ohwr.org/projects/optical-cdr-fmc/wiki.
= [11] TTC group, CERN TTC homepage, url: http://ttc.web.cern.ch/TTC.

= [12] Analog Devices Inc., ADN2814: Continuous Rate 10Mb/s to 675Mb/s Clock and Data Recovery
IC with Integrated Limiting Amp, url: http://www.analog.com/static/imported-files/data_sheets/
ADN2814.pdf.

= [13] Silicon Labs Inc., Si5345/44/42 Rev D Data Sheet - 10-Channel, Any-Frequency, Any-Output
Jitter Attenuator/ Clock Multiplier, url: http://www.silabs.com/SupportDocuments/
TechnicalDocs/Si5345-44-42-D-DataSheet.pdf.

= [14] Silicon Labs Inc., Si5324 Data Sheet - Any-Frequency, Any-Output Precision Clock Multiplier
/ Jitter Attenuator, url: https://www.silabs.com/documents/public/data-sheets/Si5324.pdf.

= [15] Xilinx, Xilinx Vivado Design Suite, 2016, url: https://www.xilinx.com/products/design-tools/
vivado.html.

= [16] Linear Technology, LTC2991 Data Sheet - Octal 12C Voltage, Current, and Temperature
Monitor, url: http://cds.linear.com/docs/en/datasheet/2991ff.pdf.

= [17] The Versatile Link Developers, The Versatile Link Common Project, 2008, url:
https://espace.cern.ch/project-versatile-link/public/default.aspx.

= [18] CERN GBT-FPGA project, url: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx.

= [19] E-link Wrapper Deployment User Guide, url: https://espace.cern.ch/ATLAS-NSW-ELX/
Shared%20Documents/Overview%20and%20General/elink_wrapper_userGuide.pdf.

= [20] SCA eXtension User Guide, url: https://espace.cern.ch/ATLAS-NSW-ELX/
Shared%20Documents/NSW%20Trigger%20Processor/scax_userGuide.pdf.

= [21] SCA eXtension: a Design for FPGA Parameter Configuration within the ATLAS DAQ Scheme -
IEEE/NSS Proceeding, url: https://ieeexplore.ieee.org/document/9059894.

= [22] IC-over-NetIO Gitlab Repository, url: https://gitlab.cern.ch/cbakalis/ic-over-netio

177

https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://cds.cern.ch/record/2809058/files/lpGBT_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm
http://www.ohwr.org/projects/optical-cdr-fmc/wiki
http://ttc.web.cern.ch/TTC
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
https://www.silabs.com/documents/public/data-sheets/Si5324.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://cds.linear.com/docs/en/datasheet/2991ff.pdf
https://espace.cern.ch/project-versatile-link/public/default.aspx
https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/Overview%20and%20General/elink_wrapper_userGuide.pdf
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/Overview%20and%20General/elink_wrapper_userGuide.pdf
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/NSW%20Trigger%20Processor/scax_userGuide.pdf
https://espace.cern.ch/ATLAS-NSW-ELX/Shared%20Documents/NSW%20Trigger%20Processor/scax_userGuide.pdf
https://ieeexplore.ieee.org/document/9059894
https://gitlab.cern.ch/cbakalis/ic-over-netio

	FELIX User Manual
	Table of Contents
	1. Welcome to the FELIX User Manual
	1.1 Overview

	2. Introduction to FELIX
	2.1 FELIX Variants and Functionality
	2.1.1 Gigabit Transceiver (GBT) and the Versatile Link
	2.1.2 Low Power Gigabit Transceiver (lpGBT)
	2.1.3 FULL Mode
	2.1.4 Interlaken Mode
	2.1.5 ATLAS ITk Pixel and Strip

	3. Hardware Setup
	3.1 FLX-712
	3.1.1 Installation

	3.2 FLX-182
	3.2.1 Installation

	3.3 FLX-155
	3.3.1 Installation

	3.4 VC-709 (Commodity Platform)
	3.4.1 Installation of VC-709

	3.5 FELIX Host PC
	3.5.1 PCIe bifurcation
	3.5.2 IOMMU

	3.6 FELIX drivers
	Driver Flags

	3.7 Network Interfaces
	3.7.1 Network drivers
	3.7.2 Network configuration

	3.8 TTC Systems
	3.8.1 ATLAS Local Trigger Interface (LTI)
	3.8.2 Trigger via Electrical Interfaces
	3.8.3 Legacy TTC System

	4. Software Distribution
	4.1 CVMFS

	5. Firmware Releases and Programming
	5.1 Programming a FELIX card
	5.1.1 PCIe hotplug procedure

	5.2 Programming an FLX-182
	5.2.1 Flashing the SD-card

	5.3 Programming an FLX-712
	5.4 Programming an FLX-709
	5.5 Programming FLX cards via JTAG using Vivado
	5.5.1 Programming the FPGA Directly
	5.5.2 Programming the FLASH ROM (FLX-709/712 only)

	5.6 Firmware debugging over PCIe
	5.6.1 XVC (Xilinx Virtual Cable) for FLX-712/709

	5.7 After the Reprogramming
	5.7.1 Initialising the Card
	5.7.2 Connecting and Initialising Optical Links
	5.7.3 Physical Link Layer Status: FLX-712
	5.7.4 Physical Link Layer Status: FLX-182
	5.7.5 Physical Link Layer Status: FLX-709
	5.7.6 Logical Link Layer Initialisation (All FLX cards)

	6. Basic Tools
	6.1 FELIX E-link Configuration with elinkconfig
	6.1.1 Global Panel
	6.1.1.1 Data Path Fan Out Selectors: TH_FanOut and FH_FanOut
	6.1.1.2 Data Timeout Control Dialog
	6.1.1.3 Clock Source Selection Dialog
	6.1.1.4 Register Settings Dialog

	6.1.2 ToHost Panel
	6.1.3 FromHost Panel
	6.1.4 Link and Data Generator Configuration Upload Dialog
	6.1.5 Guide to Valid E-link Configurations
	6.1.5.1 Semi-static Firmware GBT E-link Configuration

	6.1.6 Guide to common configuration tasks
	6.1.6.1 Working with E-link configurations stored in files
	6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a file
	6.1.6.3 Configure the to-host Level-1 Accept info E-link (TTC-to-Host E-link)
	6.1.6.4 Configure the from-host TTC E-links
	6.1.6.5 Configure GBT-SCA E-links to/from host
	6.1.6.6 IC channel

	6.2 Low Level Tools
	6.2.1 flx-info
	6.2.2 fcap
	6.2.3 flx-config
	6.2.4 flx-init
	6.2.5 flx-reset
	6.2.6 flx-pod
	6.2.7 felix-cmem-free
	6.2.8 flx-busy-mon

	6.3 Dataflow Tools FELIX from/to Host PC
	6.3.1 fdaq(m)
	6.3.1.1 Running a DAQ Test with External Data Source
	6.3.1.2 Running a DAQ Test with Internal Data Generation

	6.3.2 fupload

	6.4 FELIX Configuration Tools
	6.4.1 felink
	6.4.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

	6.4.2 fereverse
	6.4.3 fgpolarity
	6.4.4 feconf
	6.4.5 femu
	6.4.6 ffmemu
	6.4.7 fttcemu
	6.4.8 fttcbusy
	6.4.9 fexoff
	6.4.10 fexofftx
	6.4.11 feto
	6.4.12 febrc
	6.4.13 fflash
	6.4.14 fflashprog

	6.5 FELIX Data Debugging Tools
	6.5.1 fcheck
	6.5.2 fedump

	6.6 GBTX and lpGBT Configuration Tools
	6.6.1 fice
	6.6.2 flpgbtconf
	6.6.3 fgbtxconf
	6.6.4 fscai2cgbtx

	6.7 GBT-SCA Tools
	6.7.1 fec
	6.7.2 fscaid
	6.7.3 fscaio
	6.7.4 fscaadc
	6.7.5 fscadac
	6.7.6 fscai2c
	6.7.7 fscads24
	6.7.8 fscajtag
	6.7.9 fxvcserver
	6.7.10 fscareply

	6.8 Tools for lpGBT Control and Monitoring Channels
	6.8.1 flpgbtio
	6.8.2 flpgbti2c
	6.8.3 flpgbtds24

	7. Felix-star
	7.1 Introduction
	7.2 Architecture
	7.3 Felix Star executables
	7.3.1 felix-tohost
	7.3.2 felix-toflx
	7.3.3 felix-register

	7.4 Monitoring
	7.5 Enabling streams
	7.6 Quick start
	7.7 Network Parameters

	8. Orchestration of FELIX applications
	8.1 Supervisor
	8.1.1 Configuration file
	8.1.2 Control
	8.1.3 Startup sequence
	8.1.4 Generation of many config files

	8.2 Management of multiple FELIX hosts
	8.2.1 Autostart via Systemd
	8.2.2 Control multiple hosts

	8.3 Useful scripts
	8.3.1 felix-get-ip

	9. Felix-star client applications
	9.1 Felix-Client-Thread API
	9.2 Data Handler / SW ROD OKS configuration

	10. FAQ, Troubleshooting and User Resources
	10.1 Frequently Asked Questions
	10.2 Troubleshooting
	10.2.1 Known Issues with GBTx
	10.2.2 IOMMU
	10.2.3 File Descriptor (FD) Limit
	10.2.4 Debugging Link Status
	10.2.5 SMBus Access
	10.2.6 Problems with CMEM allocation on boot

	10.3 Guide for System Designers
	10.4 FELIX Firmware Modules for Front-end Users
	10.4.1 Downloading Firmware Source
	10.4.2 GBT Test Modules
	10.4.2.1 GBT-FPGA
	10.4.2.2 GBTx

	10.4.3 FULL Mode Test Modules
	10.4.3.1 Link Layer Tests
	10.4.3.2 Protocol Tests

	10.4.4 E-link Wrapper

	10.5 External Software Resources and Tools
	10.5.1 SCA eXtension — FPGA emulation of the SCA ASIC
	10.5.2 IC-over-NetIO

	Appendix A: Setting up a TTC System for use with FELIX
	A.1 The ALTI System
	A.1.1 Software Setup
	A.1.2 Sending TTC Signals with ALTI
	A.1.3 Testing BUSY signal with ALTI

	A.2 The TTCvi/TTCvx (A)
	A.2.1 Tuning a TTC system
	A.2.2 Guide to TTC Channel B
	A.2.3 B channel decoding firmware
	A.2.4 Channel B decoding software
	A.2.5 Useful documents

	Appendix B: FLX-712 Technical Information
	B.1 Overall Design
	B.2 Fibre Mapping and Connectivity
	B.2.1 24 Channel Version
	B.2.2 48 Channel Version

	Appendix C: Guide to FELIX Data Structures
	C.1 ToHost blocks
	C.2 TTC2H messages
	C.3 FromHost blocks

	Appendix D: Guide to Using FELIX with the GBT-SCA
	D.1 Introduction
	D.2 Typical test setup
	D.3 Procedure to set up an E-link to a GBT-SCA
	D.4 Low level operations with the fec tool
	D.5 A Software Suite for the Radiation Tolerant GBT-SCA - The Production system
	D.5.1 OpcUaSca server
	D.5.2 ScaSoftware Package

	D.6 SCA References

	Appendix E: Guide to Using FELIX with the SCA eXtension
	E.1 Introduction
	E.2 Establishing a Connection between the SCAX and FELIX
	E.2.1 General Steps
	E.2.1.1 Deploying the SCAX in a pre-existing FPGA design
	E.2.1.2 Connecting the SCAX to a GBT-FPGA or a GBTx
	E.2.1.3 Configuring FELIX Prior to Connectivity Testing
	E.2.1.4 E.2.1.4 Validating the SCAX’s RX Path
	E.2.1.5 Validating the SCAX’s TX Path
	E.2.1.6 Connecting the OPC Server

	Appendix F: External emulators
	F.1 FELIG
	F.2 FMEmu
	F.2.1 Quick start guide
	F.2.2 FMEmu data format and payload

	Appendix G: XOFF Connection
	G.1 Introduction
	G.2 Operation
	G.3 XOFF capable E-Links
	G.4 Retransmission
	G.5 Data format
	G.6 XOFF Statistics

	Advanced interface and switch configuration
	References

